
Abstract
Research Problem and Approach: The integration of deep learning into
critical care medicine offers unprecedented opportunities for predicting adverse
patient outcomes, yet the opacity of these “black box” algorithms presents a
fundamental barrier to clinical adoption. In high-stakes environments where
decisions determine life or death, the lack of algorithmic transparency raises
significant concerns regarding safety, clinician trust, and ethical accountability.
This thesis presents a comprehensive scoping review of Explainable AI (XAI)
methods applied within the Intensive Care Unit (ICU), investigating how tech-
nical interpretability techniques are being translated into clinical practice to
bridge the gap between computational power and medical reasoning.

Methodology and Findings: By synthesizing current literature on Human-
AI interaction and predictive modeling in critical care, this research maps the
environment of XAI strategies, ranging from model-agnostic methods like SHAP
to causally-informed deep learning architectures. The analysis reveals that while
advanced neural networks outperform traditional scoring systems like APACHE
and SOFA, an inverse relationship often persists between predictive performance
and interpretability. Furthermore, the review highlights that current explana-
tions frequently fail to alleviate the cognitive load on clinicians, complicating the
reconciliation of algorithmic outputs with established physiological knowledge.

Key Contributions: This study makes three primary contributions: (1) A
comprehensive taxonomy of existing XAI applications in critical care settings,
distinguishing between technical explainability and practical clinical utility; (2)
An evaluation of the mediating role of trust in Human-AI interaction, high-
lighting how the lack of transparency risks causing either “blind trust” or the
rejection of valid alerts; and (3) An identification of critical gaps in safety vali-
dation, demonstrating that current regulatory frameworks require more strong
specifications for algorithmic transparency to ensure patient safety.

Implications: The findings underscore that technical explainability alone is
insufficient for clinical deployment; XAI must be rigorous, context-aware, and
aligned with clinical reasoning processes to ensure accountability. This research
provides a roadmap for future development, emphasizing the urgent need for
prospective, cross-institutional evaluations to transform AI from a theoretical
asset into a trustworthy bedside partner for critical care teams.

Keywords: Artificial Intelligence, Critical Care Medicine, Explainable AI, Ma-
chine Learning, Deep Learning, Intensive Care Unit, Black Box Models, Clinical
Decision Support, Algorithmic Transparency, SHAP, Patient Safety, Human-AI
Interaction, Predictive Modeling, Medical Ethics, Trust
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1. Introduction
The integration of artificial intelligence (AI) into critical care medicine repre-
sents one of the most significant technological shifts in modern healthcare his-
tory. Intensive Care Units (ICUs) are data-rich environments where clinicians
must make high-stakes, time-sensitive decisions based on continuous streams of
physiological data, laboratory results, and clinical notes. The advent of machine
learning (ML), particularly deep learning (DL), has enabled the development of
sophisticated predictive models capable of analyzing this vast information envi-
ronment with unprecedented accuracy (Cheng et al., 2025)(Singh, 2025). These
models hold the promise of revolutionizing patient care by predicting adverse
events such as sepsis, mortality, and acute kidney injury earlier than traditional
scoring systems (Liu et al., 2024)(Wei et al., 2025). However, the increasing com-
plexity of these algorithms has resulted in a “black box” phenomenon, where
the internal logic of the model is opaque to the human user (Somani et al.,
2023). This lack of transparency poses a fundamental barrier to clinical adop-
tion, raising critical questions regarding safety, trust, and accountability (Jia et
al., 2021)(Mirchandani, 2025).

This thesis presents a scoping review of Explainable AI (XAI) methods applied
to machine learning models within the ICU setting. By mapping the current
environment of XAI literature, this research aims to identify how technical ex-
plainability methods are being translated into clinical practice, the effectiveness
of these methods in fostering clinician trust, and the existing gaps between
algorithmic transparency and practical clinical utility.

1.1 The Evolution of Data-Driven Critical Care
Critical care medicine has always been a discipline grounded in data interpreta-
tion. Traditionally, clinicians have relied on scoring systems such as the Acute
Physiology and Chronic Health Evaluation (APACHE) or the Sequential Organ
Failure Assessment (SOFA) to stratify risk and guide treatment. These linear
models, while interpretable, often fail to capture the complex, non-linear inter-
actions inherent in human physiology. The shift towards “AI-Enabled Intensive
Care Units” aims to overcome these limitations by integrating real-time deci-
sion support, automated handoffs, and intelligent monitoring into a cohesive
framework (Singh, 2025).

Recent advancements have demonstrated that deep learning approaches can
significantly outperform traditional statistical methods in prognostic tasks. For
instance, advanced neural network architectures have been successfully deployed
for 28-day mortality prediction, utilizing complex physiological features that lin-
ear models might overlook (Long & Tong, 2025). Similarly, causally-informed
deep learning models are pushing the boundaries of generalizable outcome pre-
diction, moving beyond mere correlation to identify potential causal drivers of
clinical deterioration (Cheng et al., 2025).
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Despite these performance gains, the transition from research validation to bed-
side implementation remains slow. A primary friction point is the opacity of
models such as Long Short-Term Memory (LSTM) networks or Transformers.
While an LSTM model might achieve superior accuracy in predicting mortality
using electronic health record (EHR) data, its decision-making process–often
involving millions of parameters–remains inaccessible to the treating physician
(Adebayo, 2025). In an environment where a false negative can lead to missed
life-saving intervention and a false positive can result in dangerous overtreat-
ment, “blind trust” in an algorithm is clinically and ethically unacceptable.

1.2 The “Black Box” Problem in High-Stakes Decision
Making
The “black box” problem refers to the inverse relationship often observed be-
tween model performance and interpretability. As algorithms become more
complex (e.g., deep neural networks), their predictive power typically increases,
but the ability to understand why a specific prediction was made decreases (So-
mani et al., 2023). In the context of the ICU, this opacity creates distinct
categories of risk that must be addressed before widespread deployment can
occur.

1.2.1 Clinical Safety and Validation

Safety in safety-critical systems, such as aviation or nuclear power, is usually as-
sured through rigorous specification and testing against known standards. How-
ever, machine learning systems in healthcare often lack clear, pre-defined speci-
fications against which validity can be assessed, a problem exacerbated by their
opaque nature (Jia et al., 2021). Without explainability, it becomes difficult to
distinguish whether a model is learning valid physiological signals or exploiting
artifacts in the training data (e.g., predicting mortality based on the presence
of a specific billing code or hospital process rather than patient physiology).

1.2.2 Trust and Human-AI Interaction

Trust is a mediating factor in the successful adoption of healthcare technolo-
gies. Research into Human-AI interaction indicates that trust is significantly
influenced by the perceived usefulness and perceived ease of use of the system
(Isparan Shanthi et al., 2024). When clinicians are presented with a prediction
that contradicts their intuition–for example, a recommendation to delay intuba-
tion in a hypoxic patient–they require a rationale to evaluate the validity of the
AI’s suggestion. Without such explanation, the cognitive load on the clinician
increases as they attempt to reconcile the AI output with their own assessment,
potentially leading to the rejection of valid alerts or, conversely, automation
bias where incorrect AI advice is followed uncritically (Eva et al., 2022).
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1.2.3 Regulatory and Ethical Accountability

The drive for explainability is also propelled by emerging regulatory frameworks.
The “right to explanation” concept, embedded in regulations such as the GDPR,
suggests that automated decisions significantly affecting individuals must be
explainable. In healthcare, this translates to an ethical imperative: clinicians
must be able to justify their treatment decisions to patients and families. If a
treatment plan is based on an AI recommendation that cannot be explained, the
chain of accountability is broken (Mirchandani, 2025). Furthermore, verifying
machine unlearning–ensuring that private or biased data has been removed from
a model–requires explainable interfaces to confirm that the model no longer
relies on the excised information (Vidal et al., 2024).

1.3 Explainable AI (XAI): Definitions and Approaches
Explainable AI (XAI) encompasses a suite of techniques and methods designed
to make the outputs of artificial intelligence systems intelligible to human users.
In the medical domain, XAI is not merely a technical feature but a bridge
between computational power and clinical reasoning. The literature identifies
several categories of XAI methods currently being explored in critical care.

1.3.1 Model-Agnostic Methods

Model-agnostic methods are designed to interpret predictions from any machine
learning algorithm, regardless of its internal architecture. The most promi-
nent example in the recent literature is SHapley Additive exPlanations (SHAP).
SHAP values provide a unified measure of feature importance, attributing the
contribution of each input variable to the final prediction. Studies have demon-
strated the utility of SHAP in interpreting mortality predictions, allowing clin-
icians to see which specific physiological parameters (e.g., lactate levels, blood
pressure trends) drove the model’s risk assessment (Long & Tong, 2025)(Ade-
bayo, 2025).

1.3.2 Model-Specific and Attention Mechanisms

Unlike agnostic methods, model-specific approaches uses the internal structure
of the algorithm. In deep learning, attention mechanisms have emerged as a
powerful tool for interpretability, particularly for time-series data common in
ICUs. Attention maps can highlight which time steps or variables in a temporal
sequence were most influential for a specific prediction. For instance, in sepsis
prediction models, attention maps can visualize which vital sign fluctuations
over the preceding hours triggered the sepsis alert, aligning the model’s “focus”
with clinical signs of deterioration (Liu et al., 2024). Advanced architectures,
such as the Triple Attention Transformer, further enhance this by improving
contextual coherence in processing long-term dependencies, which is important
for analyzing patient trajectories over extended ICU stays (Ghaith, 2024).
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1.3.3 Visual and Feature-Based Explanations

In domains involving medical imaging or complex signals, explainability of-
ten takes the form of visual heatmaps. Techniques like Layer-Wise Relevance
Propagation (LRP) have been applied to classify brain MRI images, generating
heatmaps that identify the specific anatomical regions contributing to a diagno-
sis (Naik et al., 2025). While primarily used in radiology, these techniques are
increasingly relevant in the ICU for interpreting bedside ultrasound or continu-
ous waveform monitoring data.

Table 1 summarizes the core differences between traditional “Black Box” ap-
proaches and the emerging XAI paradigms in the context of intensive care.

Feature
Black Box ML
Models

Explainable AI
(XAI) Models

Clinical
Implication

Transparency Opaque internal
logic

Transparent or
interpretable
outputs

XAI enables
validation of
clinical logic.

Error
Detection

Difficult to trace
source of error

Errors can be
traced to specific
features

XAI facilitates
safety auditing
(Jia et al., 2021).

User Trust Requires blind
faith in metrics

Builds trust
through
justification

XAI supports
shared
decision-making
(Isparan Shanthi
et al., 2024).

Complexity High (Deep
Learning,
Ensembles)

High, but with
an
interpretability
layer

Performance is
maintained while
adding clarity.

Focus Optimization of
accuracy metrics

Optimization of
utility and
explainability

XAI balances
accuracy with
usability
(Adebayo, 2025).

Table 1: Comparison of Black Box vs. Explainable AI paradigms in critical care
settings. Adapted from concepts in (Somani et al., 2023) and (Mirchandani,
2025).

The transition from black box to explainable models is not binary. As illustrated
in Table 1, XAI attempts to retain the high complexity and performance of
modern algorithms while adding a layer of interpretability. This balance is
critical because simplifying the model itself (e.g., using a simple decision tree
instead of a neural network) might reduce accuracy to a level that is clinically
useless, whereas a post-hoc explanation method allows for both high accuracy
and interpretability (Adebayo, 2025).
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1.4 Applications of XAI in Intensive Care
The application of XAI in the ICU is diverse, addressing various pathologies and
operational challenges. The literature reveals a concentration of XAI research
in high-mortality conditions where early intervention is decisive.

Sepsis and Infection Management: Sepsis remains a leading cause of ICU
mortality. XAI is being used to decipher complex deep learning models that pre-
dict sepsis onset using vital signs and laboratory values. By highlighting specific
determinants–such as a subtle but sustained drop in blood pressure combined
with rising heart rate–XAI tools can alert clinicians to early warning signs that
might otherwise be dismissed as noise (Liu et al., 2024). Furthermore, rein-
forcement learning (RL) agents designed for sepsis treatment recommendation
are incorporating explainability to justify dosing decisions, moving towards con-
tinuous action space solutions that mimic the nuance of clinician adjustments
(Huang et al., 2022).

Mechanical Ventilation and Respiratory Failure: Predicting the need
for intubation and managing mechanical ventilation are core ICU tasks. Recent
studies have utilized machine learning combined with XAI to predict intubation
needs, providing clinicians with risk scores decomposed into contributing factors
like oxygen saturation trends and respiratory effort (Saykat et al., 2025). Addi-
tionally, in patients with ventilator-associated pneumonia (VAP), interpretable
models are being developed to assess in-hospital mortality risk, aiding in prog-
nosis discussions and resource allocation (Wei et al., 2025).

Hemodynamic Monitoring and Drug Dosing: The management of hy-
potension often requires the precise titration of catecholamines (vasopressors).
New approaches are moving beyond simple threshold-based predictions to ac-
tionable forecasting of catecholamine therapy initiation. These models aim to
explain why a patient is likely to require hemodynamic support, potentially
distinguishing between hypovolemic and distributive shock patterns (Koebe et
al., 2025). Similarly, in related fields like water treatment, XAI has been used
to optimize coagulant dosing, a control problem analogous to drug titration,
demonstrating the transferability of explainable optimization techniques (Park
et al., 2024).

Resource Management and Workflow: Beyond direct patient care, XAI is
finding utility in operational efficiency. Predicting length of stay and resource
utilization helps in bed management. Moreover, adaptive XAI systems are
being proposed that personalize explanations based on the user’s expertise level–
offering detailed technical data to a senior intensivist while providing high-level
summaries to a bed manager or rotational resident (Mohammed, 2025).

1.5 Research Problem and Rationale
Despite the proliferation of XAI methods in technical literature, there remains a
significant gap in understanding their practical utility in the ICU. Much of the
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existing research focuses on the development of new algorithms (e.g., a novel
attention mechanism or a variation of SHAP) rather than the evaluation of
these tools in clinical workflows. There is a discordance between what computer
scientists consider an “explanation” (e.g., a feature importance bar chart) and
what clinicians require to make a safe decision (e.g., a counterfactual scenario
or causal reasoning) (Zhang, 2023).

Furthermore, the “explanation” provided by current methods may not always
be strong. Issues such as the stability of explanations (whether similar inputs
yield similar explanations) and the fidelity of post-hoc interpretations are active
areas of concern. For instance, if a SHAP plot identifies a feature as important,
does that feature actually drive the model’s prediction in a causal sense, or is it
merely a correlated proxy? (Cheng et al., 2025)(Zhang, 2023).

Therefore, a comprehensive scoping review is necessary to map the extent, range,
and nature of research activity in this field. Unlike a systematic review, which
might focus on quantifying the diagnostic accuracy of specific models, a scoping
review is appropriate here to clarify concepts, identify the types of XAI methods
available, and analyze knowledge gaps regarding their implementation in critical
care (Arksey & O’Malley, 2005).

1.6 Research Question and Objectives
The primary research question guiding this thesis is: What explainable AI (XAI)
methods have been applied to machine learning models used in intensive care
unit (ICU) clinical decision support, and what are their reported effectiveness,
limitations, and implementation challenges?

To answer this question, the following specific objectives have been established:
1. Categorize the types of XAI methods (e.g., model-agnostic, attention-based,
example-based) currently utilized in ICU-related machine learning literature. 2.
Identify the clinical domains within critical care (e.g., sepsis, ventilation, mor-
tality prediction) where XAI is most frequently applied. 3. Evaluate how these
studies assess the “explainability” of their models, specifically looking for met-
rics of human-centered evaluation (trust, utility, cognitive load) versus purely
computational metrics. 4. Analyze the reported barriers to implementation,
including technical limitations, data privacy concerns, and regulatory hurdles.

1.7 Methodology Overview
This thesis employs a scoping review methodology, adhering to the framework
outlined by (Arksey & O’Malley, 2005) and the PRISMA-ScR (Preferred Re-
porting Items for Systematic reviews and Meta-Analyses extension for Scoping
Reviews) guidelines. This approach allows for the synthesis of a broad range of
study designs, from technical algorithmic proposals to qualitative evaluations of
clinician user interfaces.

The search strategy targets major bibliographic databases including PubMed,
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IEEE Xplore, and Scopus, focusing on literature published in the era of mod-
ern deep learning (post-2015). The review specifically includes studies that
combine three core elements: (1) Machine Learning/Artificial Intelligence, (2)
Explainability/Interpretability, and (3) Intensive Care/Critical Care settings.

Table 2 provides a preliminary overview of the types of studies anticipated in the
review, categorized by the interaction between clinical tasks and XAI methods.

Clinical Domain
Common ML
Tasks

Typical XAI
Methods Key Citations

Outcomes Mortality
Prediction

SHAP, LIME,
LSTM+SHAP

(Long & Tong,
2025), (Adebayo,
2025), (Wei et
al., 2025)

Sepsis Early Detection,
Treatment

Attention Maps,
RL
Interpretation

(Liu et al., 2024),
(Huang et al.,
2022)

Respiratory Intubation,
Weaning

Feature
Importance,
Decision Trees

(Saykat et al.,
2025), (Wei et
al., 2025)

Hemodynamics Hypotension,
Vasopressors

Forecasting,
Causal Inference

(Cheng et al.,
2025), (Koebe et
al., 2025)

Imaging/Signals MRI, Waveform
Analysis

LRP, Heatmaps,
CNN Vis.

(Naik et al.,
2025), (Bashir et
al., 2025)

Table 2: Matrix of Clinical Domains and XAI Approaches. This table illustrates
the intersection of clinical problems and technical explanation strategies identified
in the preliminary literature search.

As indicated in Table 2, the field is characterized by a diverse array of applica-
tions. The review will systematically extract data regarding the specific algo-
rithms used, the explanation modality presented to users, and any validation of
the explanation’s quality.

1.8 Thesis Structure
This thesis is organized into five chapters. Following this Introduction, Chap-
ter 2 (Background & Theoretical Framework) provides a detailed ex-
amination of the theoretical underpinnings of XAI, including the taxonomy of
interpretability (global vs. Local, ante-hoc vs. Post-hoc) and the psychological
theories of trust and cognitive load in human-computer interaction. It also
details the specific data challenges of the ICU environment.
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Chapter 3 (Methodology) details the scoping review protocol, including
search strings, inclusion/exclusion criteria, and the data charting form. It de-
scribes the process of study selection and the analytical framework used to
synthesize the findings.

Chapter 4 (Results) presents the findings of the scoping review. It offers
a numerical summary of the included studies, a thematic analysis of the XAI
methods identified, and a narrative synthesis of how these methods are applied
across different clinical use cases. This chapter also reports on the evaluation
metrics used in the literature, highlighting the scarcity of user-centric validation.

Chapter 5 (Discussion and Conclusion) interprets the findings in the con-
text of the broader healthcare AI environment. It discusses the implications of
the “interpretability gap,” addresses the limitations of current XAI approaches
in handling multimodal and time-series data, and offers recommendations for fu-
ture research and clinical implementation strategies. The thesis concludes with
a summary of the potential for XAI to transform critical care medicine into a
discipline that is both data-driven and transparently human-centered.

1.9 Significance of the Study
The significance of this research lies in its potential to guide the future devel-
opment of clinical decision support systems. As the FDA and other regulatory
bodies move towards stricter requirements for Software as a Medical Device
(SaMD), the ability to explain algorithmic output will transition from a “nice-
to-have” feature to a mandatory requirement (Jia et al., 2021)(Vidal et al.,
2024). By consolidating current knowledge and identifying the disconnects be-
tween technical capability and clinical need, this thesis aims to inform both
developers and clinicians.

For developers, this review highlights the need to move beyond static feature im-
portance plots towards causal, counterfactual, and adaptive explanations that
align with clinical reasoning (Zhang, 2023)(Mohammed, 2025). For clinicians
and healthcare administrators, it provides a framework for evaluating new AI
tools, emphasizing that accuracy alone is insufficient for safe deployment. Ulti-
mately, the goal of XAI in the ICU is not merely to open the “black box,” but
to illuminate the path towards safer, more effective, and more equitable patient
care.

The urgency of this investigation is underscored by the rapid pace of AI de-
velopment. With new architectures like Transformers becoming standard for
processing electronic health records, the complexity of models is increasing ex-
ponentially. Without a concurrent advancement in interpretability, the gap be-
tween what machines can predict and what humans can understand will widen,
potentially stalling the deployment of life-saving technologies. This scoping re-
view serves as a critical step in bridging that gap, ensuring that the “AI-ICU”
of the future (Singh, 2025) is built on a foundation of transparency and trust.
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2. Main Body
The integration of artificial intelligence (AI) into critical care medicine repre-
sents a major change in how clinicians approach diagnosis, prognosis, and treat-
ment planning. As machine learning (ML) models–particularly deep learning
architectures–demonstrate increasingly superior performance in predicting ad-
verse events such as sepsis, mortality, and organ failure, the “black box” nature
of these algorithms has emerged as a significant barrier to clinical adoption. This
literature review synthesizes current research regarding Explainable AI (XAI)
within the intensive care unit (ICU) setting. It examines the theoretical foun-
dations of interpretability, categorizes the methodological approaches currently
deployed, analyzes clinical applications across various critical care domains, and
evaluates the human factors influencing the acceptance of these systems.

2.1 Theoretical Framework and Foundational Concepts
The theoretical underpinnings of XAI in healthcare are rooted in the tension
between predictive performance and model transparency. In the high-stakes
environment of the ICU, where decisions must be made rapidly and carry life-
or-death consequences, the opacity of complex algorithms poses ethical, legal,
and practical challenges.

2.1.1 The “Black Box” Problem in Critical Care

The “black box” phenomenon refers to the inability of human observers to un-
derstand the internal decision-making logic of complex non-linear models, such
as Deep Neural Networks (DNNs) and ensemble methods like Gradient Boosting
Machines (GBM). While these models often outperform traditional linear regres-
sion or scoring systems (e.g., APACHE II, SOFA) in capturing the non-linear
dynamics of patient physiology, their lack of transparency impedes trust.

Research indicates that in safety-critical systems, the absence of a clear specifica-
tion against which to assess validity exacerbates the difficulty of assuring safety
(Jia et al., 2021). Unlike rule-based systems where logic is explicit, data-driven
models learn latent representations that may rely on spurious correlations or
confounding variables not visible to the clinician. This opacity is particularly
problematic in the ICU, where “algorithmic silence”–the failure of a model to
warn of a deterioration–or “algorithmic hallucination”–false positives leading to
alarm fatigue–can directly compromise patient safety.

Furthermore, the complexity of ICU data, which includes high-frequency vital
signs, laboratory values, imaging, and unstructured clinical notes, necessitates
models that can handle multimodal inputs. Recent advancements in deep learn-
ing have enabled the processing of such heterogeneous data, yet they have si-
multaneously deepened the interpretability gap. For instance, while Recurrent
Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks are
highly effective for time-series prediction in critical care (Bon & Cardot, 2011),
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their internal state transitions are notoriously difficult to map to clinical con-
cepts.

2.1.2 Defining Interpretability and Explainability

The literature distinguishes between “interpretability” and “explainability,”
though these terms are often used interchangeably in clinical studies. A
foundational taxonomy provided by Somani et al. (Somani et al., 2023) clarifies
these concepts within the medical domain. Interpretability is defined as a
passive characteristic of a model, referring to the degree to which a human
can understand the cause of a decision. In contrast, explainability refers to
the active techniques and interface elements used to communicate the model’s
internal state to a user.

This distinction is important for ICU applications. A linear regression model
is inherently interpretable because its coefficients directly represent the change
in the outcome variable for a unit change in the predictor. However, a deep
learning model for sepsis prediction is not inherently interpretable and thus
requires XAI methods to generate post-hoc explanations.

Recent scholarship has expanded these definitions to include “accountability”
and “transparency.” Mirchandani (Mirchandani, 2025) argues that in societal
sectors like healthcare, explainability serves as a mechanism for accountability,
allowing stakeholders to audit algorithmic decisions for bias and error. This
aligns with the growing demand for “Causal Explainable AI,” which moves
beyond correlation to identify cause-and-effect relationships, thereby offering
more strong and actionable insights for clinical intervention (Zhang, 2023).

2.1.3 The Role of Trust and Safety in Clinical Decision Support

Trust is a mediating variable in the successful adoption of AI technologies. The
relationship between perceived usefulness, perceived ease of use, and trust has
been modeled in recent studies, highlighting that opaque systems often fail
to garner the necessary trust from healthcare professionals regardless of their
accuracy (Isparan Shanthi et al., 2024). In the ICU, trust is not merely a
psychological state but a prerequisite for action. If a clinician does not trust a
model’s prediction of impending hemodynamic collapse, they will not initiate
the recommended vasopressor therapy.

Safety assurance is inextricably linked to explainability. Jia et al. (Jia et al.,
2021) posit that explainability is essential for verifying that a model’s reason-
ing aligns with established medical knowledge. For example, if a mortality
prediction model identifies “asthma” as a protective factor against pneumonia
death (a known artifact in some historical datasets due to aggressive treatment
protocols), an XAI method should reveal this counter-intuitive logic, allowing
clinicians to reject the model’s faulty reasoning.

Table 1 summarizes the key theoretical dimensions of XAI identified in the
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literature.

Dimension Definition Clinical Relevance Source
Interpretability Intrinsic

transparency of
a model’s logic.

Allows validation against
pathophysiology.

(Somani et
al., 2023)

Explainability Post-hoc
techniques to
elucidate
opaque models.

Enables use of
high-performance DL
models.

(Mirchandani,
2025)

Causality Identification of
cause-effect
relationships.

Supports intervention, not
just prediction.

(Zhang,
2023)

Fidelity Accuracy of the
explanation to
the model.

Ensures clinicians aren’t
misled by XAI.

(Jia et al.,
2021)

Trust User confidence
in model
reliability.

Prerequisite for adoption
and action.

(Isparan
Shanthi et
al., 2024)

Table 1: Theoretical Dimensions of XAI in Healthcare. Source: Adapted from
(Somani et al., 2023), (Jia et al., 2021), (Zhang, 2023), and (Mirchandani,
2025).

2.2 Methodological Approaches to XAI in ICU Settings
The scoping review identifies a diverse array of XAI methodologies applied to
ICU datasets. These can be broadly categorized into model-agnostic methods,
which can be applied to any algorithm, and model-specific methods, which ex-
ploit the internal architecture of specific model types (e.g., neural networks).

2.2.1 Model-Agnostic Methods: SHAP and LIME

Shapley Additive Explanations (SHAP) has emerged as the dominant model-
agnostic method in the ICU literature. Based on cooperative game theory,
SHAP assigns each feature an importance value for a particular prediction.

𝜙𝑖(𝑓, 𝑥) = ∑
𝑧′⊆𝑥′

|𝑧′|!(𝑀 − |𝑧′| − 1)!
𝑀! [𝑓𝑥(𝑧′) − 𝑓𝑥(𝑧′ � 𝑖)]

Where 𝜙𝑖 is the Shapley value for feature 𝑖, 𝑓 is the model, and 𝑀 is the set of
all input features.
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Recent studies have extensively utilized SHAP to decode mortality prediction
models. Long and Tong (Long & Tong, 2025) demonstrated the utility of inte-
grating SHAP with machine learning to interpret 28-day mortality predictions
in ICU patients. Their work highlights how SHAP summary plots can reveal
non-linear relationships between physiological features (e.g., lactate levels, heart
rate) and mortality risk, providing a global view of model behavior while main-
taining the ability to explain individual patient predictions (local interpretabil-
ity).

Similarly, Adebayo (Saykat et al., 2025) employed a hybrid approach combin-
ing Long Short-Term Memory (LSTM) networks with SHAP to bridge the gap
between accuracy and interpretability for ICU mortality prediction using Elec-
tronic Health Record (EHR) data. This application is particularly significant
as it applies a model-agnostic explainer to a complex deep learning architec-
ture, demonstrating that the “black box” of temporal sequence models can be
partially illuminated.

While SHAP provides mathematical consistency, it is computationally expensive.
Other model-agnostic methods like LIME (Local Interpretable Model-agnostic
Explanations) are also present in the literature, though less frequently in recent
high-dimensional ICU studies compared to SHAP. The dominance of SHAP is
likely due to its theoretical guarantees regarding the fair distribution of feature
contributions.

Feature importance analysis remains a critical first step in many ICU ML
pipelines. Terlapu et al. (Terlapu et al., 2024) discuss feature importance in the
context of software effort estimation, but the methodological principles trans-
fer to healthcare, where identifying the “vital few” variables from the “trivial
many” is essential for model parsimony. Furthermore, Huang (Huang, 2025)
introduced residual permutation tests as a method to assess feature importance
in non-linear models, offering a statistical rigor often missing in heuristic impor-
tance measures.

2.2.2 Attention Mechanisms in Deep Learning

For deep learning models processing time-series data (vital signs) or unstruc-
tured data (clinical notes), attention mechanisms serve as a powerful model-
specific XAI technique. Attention mechanisms allow a neural network to focus
on specific parts of the input sequence when generating a prediction, effectively
weighing the importance of different time steps or features.

Liu et al. (Liu et al., 2024) proposed “Interpretable Vital Sign Forecasting with
Model Agnostic Attention Maps” for sepsis prediction. Their approach visual-
izes which segments of a patient’s vital sign history contributed most to the
sepsis alarm. This temporal interpretability is vital in the ICU, as it allows
clinicians to see when the patient’s condition began to deviate from the norm,
correlating model attention with clinical events (e.g., a drop in blood pressure
or a spike in heart rate).
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In the domain of imaging and complex signal processing, similar techniques
are employed. Sano (SANO, 2022) and Naik et al. (Naik et al., 2025) explore
Gradient-Weighted Class Activation Mapping (Grad-CAM) and Layer-Wise Rel-
evance Propagation (LRP) for interpreting image classification models. While
their specific applications (facial attractiveness and brain MRI) differ from gen-
eral ICU monitoring, the underlying methodologies are increasingly applied to
ICU imaging tasks, such as chest X-ray analysis for pneumonia or ventilator
management.

The “Triple Attention Transformer” introduced by Ghaith (Ghaith, 2024) rep-
resents the frontier of this approach, enhancing contextual coherence in trans-
former models. In an ICU context, such architectures could theoretically track
long-term dependencies in patient history (e.g., a medication administered three
days ago) and highlight this connection to the clinician, offering a level of nar-
rative explanation that simple feature importance scores cannot provide.

2.2.3 Causal and Hybrid Frameworks

A significant limitation of standard ML is its reliance on correlation. In the ICU,
interventions (e.g., giving fluids) change outcomes, often confounding predictive
models. “Causally-informed” deep learning addresses this by explicitly modeling
cause-and-effect relationships.

Cheng et al. (Cheng et al., 2025) developed a causally-informed deep learning
framework for outcomes prediction in critical care. By integrating causal graphs
with deep learning, their model aims to provide explanations that are not just
associative but mechanistic. This is important for “generalizable” outcomes, en-
suring that a model learned in one ICU does not fail in another due to differences
in treatment protocols.

Zhang (Zhang, 2023) further elaborates on “Causal Explainable AI,” arguing
that for an explanation to be actionable, it must support counterfactual rea-
soning (e.g., “If we had not administered this drug, would the patient still have
developed kidney injury?”). This represents the next generation of XAI, moving
from “What happened?” to “What if?”.

2.2.4 Reinforcement Learning and Policy Explanation

The ICU is a dynamic environment requiring sequential decision-making, mak-
ing Reinforcement Learning (RL) an attractive paradigm. However, RL policies
are notoriously opaque.

Huang et al. (Huang et al., 2022) explored RL for sepsis treatment using con-
tinuous action spaces, a method that mimics the titration of vasopressors and
fluids. To make such policies acceptable, Saulières et al. (Saulières et al., 2023)
proposed “Reinforcement Learning Explained via Reinforcement Learning,” a
meta-approach where a secondary agent learns to explain the policy of the pri-
mary agent. This recursive explanation strategy attempts to generate justifica-
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tions for actions (e.g., “Increase norepinephrine because MAP is trending down
and lactate is rising”) rather than just outputting numerical values.

2.3 Clinical Applications and Empirical Evidence
The application of XAI in the ICU is broad, spanning from admission risk
stratification to real-time organ support management. The literature reveals
varying levels of maturity across these domains.

2.3.1 Mortality and Risk Prediction

Mortality prediction remains the most common application for XAI in critical
care. Accurate prognostication assists in resource allocation and discussions
regarding goals of care.

Long and Tong (Long & Tong, 2025) focused on 28-day mortality, a standard
endpoint in sepsis trials. By applying SHAP to physiological features, they iden-
tified that while traditional markers like age and APACHE scores are dominant,
specific patterns in dynamic vital signs also hold significant predictive power.

Adebayo (Saykat et al., 2025) utilized EHR data to predict mortality, empha-
sizing the need to bridge the gap between the high accuracy of LSTMs and
the interpretability required for clinical trust. Their findings suggest that hy-
brid models can achieve current performance (AUC > 0.85) while providing
clinician-friendly visualizations of risk factors.

Wei et al. (Wei et al., 2025) developed an interpretable ML model specifically for
in-hospital mortality in patients with Ventilator-Associated Pneumonia (VAP).
This niche application demonstrates the versatility of XAI; by isolating a specific
high-risk cohort, the model could identify risk factors specific to VAP that gen-
eral mortality models might miss, such as specific antibiotic resistance patterns
or ventilator settings.

2.3.2 Sepsis Detection and Management

Sepsis is a leading cause of ICU mortality, and early detection is a “holy grail”
of critical care informatics.

Liu et al. (Liu et al., 2024) addressed the complexity of analyzing diverse vital
signs for sepsis prediction. Their attention-based model not only predicts sepsis
onset but highlights the specific vital sign trajectories (e.g., widening pulse pres-
sure) that triggered the alarm. This allows clinicians to differentiate between
true sepsis and other causes of physiological derangement.

Beyond prediction, Huang et al. (Huang et al., 2022) applied RL to sepsis treat-
ment. The challenge here is explaining the recommendation. Unlike prediction
(where “why” explains a risk), treatment recommendation requires justifying
an intervention. While their continuous action space solution shows promise in
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simulation, the literature notes a significant gap in clinical validation of such
prescriptive AI systems due to safety concerns.

2.3.3 Respiratory Support and Airway Management

Mechanical ventilation involves complex decisions regarding intubation, wean-
ing, and extubation.

Saykat et al. (Saykat et al., 2025) focused on predicting intubation needs in
the ICU using ML and XAI. Their work addresses a critical decision point: de-
layed intubation increases mortality, while unnecessary intubation carries risks
of trauma and pneumonia. By providing explainable risk scores, such models
aim to support the clinician’s judgment in this “grey zone” of decision-making.

Wei et al. (Wei et al., 2025) also touches upon this domain through their VAP
analysis, linking mortality risk to ventilator parameters. The interpretability of
these models is important because ventilator management is highly protocolized;
an AI suggestion to deviate from protocol (e.g., changing PEEP levels) requires
a strong, transparent justification.

2.3.4 Hemodynamic Monitoring and Fluid Therapy

Hemodynamic instability requires rapid intervention with fluids and vasoactive
drugs.

Koebe et al. (Koebe et al., 2025) tackled the prediction of catecholamine therapy
initiation for hypotension. Unlike simple hypotension prediction (which is often
trivial once pressure drops), predicting the need for therapy is a nuanced clinical
task. Their work on “actionable” prediction emphasizes that the model must
predict the event early enough to intervene, and explain why the pressure is
expected to drop (e.g., vasodilation vs. Hypovolemia).

Escudero-Arnanz et al. (Escudero-Arnanz et al., 2025) utilized multimodal in-
terpretable models using multivariate time series, which is essential for hemody-
namics where heart rate, blood pressure, and urine output are tightly coupled.

Furthermore, the European Society of Intensive Care Medicine (ESICM) guide-
lines on fluid therapy (Dessap et al., 2025) highlight the complexity of fluid
resuscitation. While not an AI paper per se, the complexity described in these
guidelines underscores the need for AI models (like those proposed by Park et
al. (Park et al., 2024) for coagulant dosing, analogous to fluid dosing) to be
explainable. Park et al.’s work in water treatment optimization using XAI pro-
vides a methodological parallel: optimizing a dosage based on complex inputs
requires explaining the optimization curve to the operator.

Table 2 summarizes key empirical studies reviewed.
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Study Clinical Domain XAI Method Key Finding/Contribution
Long &
Tong
(Long
& Tong,
2025)

Mortality (28-day) SHAP Identified non-linear impact
of physiologic features on
death risk.

Liu et
al. (Liu
et al.,
2024)

Sepsis Prediction Attention
Maps

Visualized temporal vital
sign segments triggering
sepsis alarms.

Saykat
et
al. (Saykat
et al.,
2025)

Intubation Need Feature
Importance

Developed risk stratification
for airway management
decisions.

Koebe
et
al. (Koebe
et al.,
2025)

Hypotension Actionable
Prediction

Predicted need for
catecholamines,
distinguishing types of
shock.

Cheng
et
al. (Cheng
et al.,
2025)

General Outcomes Causal
Graphs

Integrated causality to
improve model
generalizability across ICUs.

Table 2: Summary of Selected Empirical Studies on XAI in ICU. Source: Com-
piled from cited references.

2.4 Human-AI Interaction and Implementation Challenges
The technical capability to generate an explanation does not guarantee its utility.
The literature increasingly focuses on the Human-Computer Interaction (HCI)
aspects of XAI.

2.4.1 Clinician Trust, Cognitive Load, and Expertise

Trust is dynamic and context-dependent. Isparan Shanthi et al. (Isparan Shan-
thi et al., 2024) investigated the mediating role of trust and the moderating
influence of cognitive load in human-AI interaction. In the ICU, cognitive load
is perpetually high. XAI systems that add to this load–by providing complex,
difficult-to-read explanations–may decrease performance even if the underlying
model is accurate.

Eva et al. (Eva et al., 2022) studied cognitive fatigue and mental workload using
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XAI to classify electrophysiological signatures. While their context was flight
simulation, the parallels to ICU monitoring are evident: operators monitoring
complex screens for alarms under fatigue. Their findings suggest that XAI can
help identify when an operator (or clinician) is missing signals due to fatigue,
or conversely, that XAI interfaces must be designed to accommodate fatigued
users.

Mohammed (Mohammed, 2025) proposed “Adaptive Explainable AI,” which
personalizes explanations based on user expertise levels. An attending physi-
cian might require a different level of explanation (e.g., mechanistic pathway)
compared to a junior resident or a nurse (e.g., immediate actionable flag). This
personalization is critical for ICU teams, which are multidisciplinary.

2.4.2 Validation and Regulatory Compliance

Validating XAI is difficult because there is often no “ground truth” for an expla-
nation. Bashir et al. (Bashir et al., 2025) presented a strong methodology for
clinical validation of XAI (in fetal scans) using a multi-level, cross-institutional
approach. They used actionable concepts as feedback to end-users, testing
whether the XAI actually improved clinical decision accuracy. This type of
prospective, cross-center evaluation is rare in the ICU literature but represents
the gold standard.

Regulatory compliance is another driver. Vidal et al. (Vidal et al., 2024) dis-
cussed verifying “Machine Unlearning” with XAI to comply with privacy reg-
ulations like GDPR. While more relevant to data privacy, it touches on the
“Right to Explanation.” In the ICU, this translates to the right of the patient
(or family) to understand why a life-support decision was recommended by an
algorithm.

2.5 Synthesis and Identification of Research Gaps
Synthesizing the reviewed literature reveals several critical gaps that this thesis
aims to address.

2.5.1 The Gap Between Technical and Clinical Metrics

Most studies evaluate XAI using technical metrics (e.g., fidelity, stability) or
proxy clinical metrics (e.g., “does the heatmap look reasonable?”). There is a
paucity of studies measuring clinical outcomes associated with XAI use. Does
showing a SHAP plot to a doctor actually reduce mortality or length of stay?
The literature is currently dominated by retrospective feasibility studies (e.g.,
(Long & Tong, 2025), (Adebayo, 2025), (Wei et al., 2025)) rather than prospec-
tive clinical trials.
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2.5.2 Real-Time Integration Challenges

While papers describe “real-time” models, few detail the infrastructure required
to serve SHAP values or attention maps in real-time at the bedside. Singh
(Singh, 2025) proposes an integrated framework for an “AI-Enabled ICU,” in-
cluding real-time decision support and automated handoffs. However, the com-
putational latency of calculating Shapley values for high-frequency ICU data
remains a technical bottleneck that is often glossed over in purely algorithmic
papers.

2.5.3 Lack of Standardization in Evaluation

There is no standard protocol for evaluating the quality of an explanation in
critical care. While Somani et al. (Somani et al., 2023) provide a taxonomy,
applied papers often create ad-hoc evaluation surveys. The field lacks a unified
“XAI Quality Score” for medical applications.

2.5.4 Multimodal and Temporal Complexity

Most XAI methods are applied to static snapshots or single modalities (only
EHR or only vitals). Escudero-Arnanz et al. (Escudero-Arnanz et al., 2025) and
Bieniek-Kaczorek et al. (Bieniek-Kaczorek et al., 2025) (focusing on photonic
interrogators for vitals) hint at the future of multimodal monitoring. However,
explaining a decision that fuses a chest X-ray, a waveform, and a lab value
remains a frontier challenge. Current methods like SHAP struggle to provide a
cohesive narrative across these disparate data types.

2.6 Summary
The literature on XAI in the ICU demonstrates a rapidly maturing field moving
from simple feature importance to complex, model-specific, and causal expla-
nations. Theoretical frameworks emphasize the necessity of trust and safety
(Jia et al., 2021), while methodological advancements in SHAP (Long & Tong,
2025) and attention mechanisms (Liu et al., 2024) provide the tools to open
the “black box.” Clinical applications are expanding from mortality prediction
to actionable intervention support (Koebe et al., 2025). However, significant
gaps remain in prospective clinical validation, real-time implementation, and
the standardization of evaluation metrics. This thesis will address these gaps
by proposing a framework for evaluating the clinical utility of XAI methods
specifically within the high-stakes, high-velocity context of intensive care.

2.2 Methodology
This chapter details the methodological framework employed to conduct the
scoping review of Explainable Artificial Intelligence (XAI) applications within
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Intensive Care Unit (ICU) clinical decision support systems. Given the het-
erogeneous nature of the literature, which spans computer science, biomedical
engineering, and clinical medicine, a scoping review approach was selected over
a systematic review. This choice aligns with the objective to map the key con-
cepts underpinning a research area and the main sources and types of evidence
available, rather than to strictly evaluate the quality of individual studies for a
meta-analysis.

The review follows the methodological framework developed by Arksey and
O’Malley (Arksey & O’Malley, 2005) and further refined by the Joanna Briggs
Institute. Reporting is conducted in accordance with the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews
(PRISMA-ScR) (McGannan et al., 2024). This rigorous protocol ensures trans-
parency, reproducibility, and a systematic approach to identifying gaps in the
current body of knowledge regarding the clinical utility, safety, and implemen-
tation of XAI in critical care settings.

2.2.1 Research Design and Protocol
The research design was structured around the five key stages outlined in the
Arksey and O’Malley framework: (1) identifying the research question; (2) iden-
tifying relevant studies; (3) study selection; (4) charting the data; and (5) col-
lating, summarizing, and reporting the results. This iterative process allowed
for the refinement of search strategies and inclusion criteria as familiarity with
the literature increased.

2.2.1.1 Identification of Research Questions

The primary objective of this review is to synthesize evidence on the deployment
and evaluation of XAI methods in ICU settings. To achieve this, the following
specific research questions guided the protocol: 1. What types of XAI tech-
niques (e.g., model-agnostic vs. Model-specific) are currently applied to ma-
chine learning models for ICU clinical decision support? 2. For which clinical
tasks (e.g., mortality prediction, sepsis detection, mechanical ventilation) are
these explanations being generated? 3. How is the effectiveness of these ex-
planations evaluated, particularly regarding clinician trust, interpretability, and
safety? 4. What are the technical and translational barriers preventing
the widespread adoption of XAI in real-time critical care workflows?

These questions address the fundamental tension in healthcare AI: the trade-
off between the high predictive performance of “black-box” models, such as
deep neural networks, and the absolute requirement for transparency in life-or-
death decision-making (Adebayo, 2025)(Jia et al., 2021). By focusing on these
dimensions, the review aims to move beyond simple algorithmic performance
metrics to understand the sociotechnical challenges of implementation.
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2.2.1.2 Theoretical Framework for Analysis

To analyze the extracted literature systematically, this review adopts a tax-
onomy of interpretability grounded in the work of Somani et al. (Somani et
al., 2023). This framework categorizes XAI approaches based on three dimen-
sions: * Scope: Local (explaining a single prediction) versus Global (explaining
the entire model behavior). * Methodology: Post-hoc (explaining a trained
model) versus Intrinsic (models that are interpretable by design). * Modality:
Feature-based (attribution scores), Concept-based (high-level abstractions), or
Example-based (prototypes).

This theoretical lens is important for distinguishing between methods that
merely identify correlations (feature importance) and those that attempt to
uncover causal mechanisms, a distinction that is vital for safe clinical interven-
tion (Cheng et al., 2025)(Zhang, 2023). Furthermore, the analysis considers
the “human-in-the-loop” perspective, evaluating how explanations align with
clinician cognitive workflows and expertise levels (Mohammed, 2025).

2.2.2 Search Strategy and Data Sources
A comprehensive search strategy was developed to capture literature at the
intersection of three distinct domains: Artificial Intelligence/Machine Learning,
Explainability/Interpretability, and Intensive Care Medicine.

2.2.2.1 Information Sources

To ensure coverage of both technical algorithmic advancements and clin-
ical applications, the following bibliographic databases were searched: *
PubMed/MEDLINE: To capture clinically focused literature and medical
informatics studies. * IEEE Xplore: To identify technical papers on XAI
architectures, signal processing, and engineering applications. * Scopus and
Web of Science: To provide broad multidisciplinary coverage including
health systems engineering. * arXiv: To access pre-print repositories where
advanced machine learning research is often first disseminated (Cheng et al.,
2025)(Liu et al., 2024).

The inclusion of arXiv is particularly important in the fast-moving field of deep
learning, where conference proceedings and pre-prints often precede journal pub-
lications by several months. However, rigorous screening was applied to non-
peer-reviewed sources to ensure methodological quality.

2.2.2.2 Search Terms and Logic

The search strategy employed a Boolean logic structure combining three
primary concept blocks: (Intensive Care OR Critical Care) AND
(Machine Learning OR Artificial Intelligence) AND (Explainable AI
OR Interpretability).
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Keywords were selected based on an initial scoping of key papers and expanded
to include controlled vocabulary (MeSH terms) and synonyms. * Block 1 (Set-
ting): “Intensive Care Units”, “Critical Care”, “ICU”, “Sepsis”, “Mechanical
Ventilation”, “Hemodynamic Monitoring”. * Block 2 (Technology): “Ma-
chine Learning”, “Deep Learning”, “Neural Networks”, “Artificial Intelligence”,
“Clinical Decision Support Systems”. * Block 3 (Methodology): “Explain-
able AI”, “XAI”, “Interpretability”, “Feature Importance”, “SHAP”, “LIME”,
“Attention Mechanisms”, “Saliency Maps”, “Black Box”.

The search was limited to documents published in English. No strict start date
was imposed, though the majority of relevant XAI literature appears post-2017,
coinciding with the popularization of SHAP (Shapley Additive Explanations)
and the increasing use of deep learning in healthcare (Long & Tong, 2025).

2.2.3 Study Selection and Eligibility Criteria
Following the initial search, all identified citations were imported into a reference
management software, and duplicates were removed. The screening process was
conducted in two stages: (1) Title and Abstract screening, and (2) Full-text
review.

2.2.3.1 Inclusion and Exclusion Criteria

To ensure the review focused specifically on the application of XAI in the ICU
context, strict eligibility criteria were applied. Table 1 outlines the specific
inclusion and exclusion parameters used during the screening process.

Category
Inclusion
Criteria

Exclusion
Criteria Rationale

Population Adult or
pediatric
patients in
ICU/Critical
Care settings.

General ward,
outpatient, or
non-clinical
populations.

Focus on
high-stakes,
time-critical
decision
environments.

Intervention ML models with
an explicit XAI
or
interpretability
component.

ML models
reporting ONLY
performance
metrics
(AUC/Accuracy)
without
explanation.

The review
specifically
investigates
interpretability,
not just
predictive power.
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Category
Inclusion
Criteria

Exclusion
Criteria Rationale

Methodology Any XAI method
(SHAP, LIME,
Attention, Rules,
Decision Trees).

Statistical
methods not
framed as
ML/AI (e.g.,
standard logistic
regression).

Focus on
“black-box”
opacity issues in
complex
non-linear
models
(Adebayo, 2025).

Outcome Clinical
predictions
(mortality, sepsis,
AKI) or resource
management.

Image
segmentation
only (unless
linked to clinical
decision
support).

Focus on
decision support
rather than pure
computer vision
tasks.

Study Type Original research,
conference
proceedings,
pre-prints.

Reviews,
editorials,
opinion pieces,
abstracts only.

Need sufficient
methodological
detail for
extraction.

Table 1: Eligibility criteria for study selection. Adapted from the PRISMA-ScR
guidelines.

2.2.3.2 Screening Process

The title and abstract screening focused on filtering out clearly irrelevant stud-
ies, such as those focusing solely on administrative data, non-ICU settings, or
purely theoretical ML papers with no medical application. Studies describing
“interpretable” models were retained even if they did not use post-hoc XAI,
provided the authors explicitly claimed interpretability as a design feature (e.g.,
decision trees or rule-based systems) (Islam et al., 2025).

During the full-text review, special attention was paid to the “depth” of the
explanation reported. Papers that merely mentioned “feature importance” as a
side note without displaying or analyzing the explanations were excluded. This
ensured that the review analyzed studies where XAI was a core component of the
research, rather than a superficial addition. For example, studies using SHAP
solely to select features for model training, without presenting the explanations
to clinicians or analyzing them for clinical validity, were generally excluded
unless they offered significant insight into the modeling process (Long & Tong,
2025)(Adebayo, 2025).
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2.2.4 Data Extraction and Charting
A standardized data extraction form was developed to systematically chart in-
formation from the included studies. This form was piloted on a random sample
of five studies to ensure consistency and capturing of relevant details.

2.2.4.1 Extraction Variables

The data extraction focused on four main categories of information: 1. Study
Characteristics: Author, year of publication, country, study design (retro-
spective vs. Prospective), and data source (e.g., MIMIC-III/IV, eICU, private
hospital data). 2. Clinical Context: The specific medical problem addressed
(e.g., sepsis prediction, mortality risk, ventilator weaning), the target patient
population, and the type of input data used (EHR, vital signs, waveforms, imag-
ing) (Escudero-Arnanz et al., 2025). 3. AI/ML Modeling: The underlying
machine learning algorithms used (e.g., LSTM, XGBoost, CNN), performance
metrics reported (AUC-ROC, AUPRC), and validation strategies. 4. XAI
Methodology: The specific XAI technique employed (e.g., SHAP, Attention
maps, Counterfactuals), the scope of explanation (local vs. Global), and the
intended user of the explanation (clinician, data scientist, patient). 5. Evalu-
ation of Explainability: Methods used to evaluate the explanation quality,
including quantitative metrics (fidelity, stability) and qualitative assessments
(clinician user studies, surveys, trust ratings) (Isparan Shanthi et al., 2024).

2.2.4.2 Handling of Technical Heterogeneity

A significant challenge in data extraction was the heterogeneity of technical
descriptions. For instance, “attention mechanisms” in deep learning models
(Liu et al., 2024)(Ghaith, 2024) function differently from “feature importance” in
tree-based models (Long & Tong, 2025). To address this, the extraction process
categorized methods based on their functional output–whether they provided
feature attribution, example-based comparisons, or rule extraction–rather than
just their algorithmic name.

Furthermore, the review distinguished between studies that used “standard” off-
the-shelf XAI tools (like the Python shap library) and those developing novel,
domain-specific interpretability methods. This distinction is important for un-
derstanding whether the field is advancing towards specialized medical XAI or
relying on general-purpose tools.

2.2.5 Analytical Framework and Synthesis
The synthesis of extracted data followed a narrative approach, as the hetero-
geneity of study designs and outcomes precluded quantitative meta-analysis.
The analysis was structured around the taxonomy of XAI methods and their
alignment with clinical requirements.
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2.2.5.1 Categorization of XAI Techniques

To organize the findings, XAI methods were grouped into three primary cat-
egories based on the literature (Somani et al., 2023): 1. Model-Agnostic
Post-Hoc Methods: Techniques applicable to any model after training, pri-
marily SHAP (Shapley Additive Explanations) and LIME (Local Interpretable
Model-agnostic Explanations). These are currently the most prevalent in the lit-
erature due to their versatility (Long & Tong, 2025)(Adebayo, 2025). 2. Model-
Specific Methods: Techniques intrinsic to specific architectures, such as at-
tention mechanisms in Recurrent Neural Networks (RNNs) and Transformers
(Ghaith, 2024), or split points in Decision Trees and Random Forests (Islam et
al., 2025). 3. Example-Based and Prototype Methods: Approaches that
explain predictions by retrieving similar historical cases (“This patient is simi-
lar to Patient X who deteriorated”), which aligns closely with clinical reasoning
processes (Leverett, 2000).

2.2.5.2 Evaluation of Clinical Utility

A critical component of the methodology was the assessment of “clinical util-
ity.” The review adopted a multi-dimensional view of utility, looking beyond
algorithmic fidelity to consider: * Actionability: Does the explanation sug-
gest a clear clinical intervention? For example, predicting hypotension is useful,
but identifying why (e.g., hypovolemia vs. Vasodilation) dictates the treatment
(fluids vs. Vasopressors) (Koebe et al., 2025)(Dessap et al., 2025). * Trust
and Safety: Does the explanation help the clinician detect model errors or
bias? This is linked to the concept of “safety assurance” in ML (Jia et al.,
2021), where XAI serves as a safeguard against automation bias. * Cognitive
Load: Does the explanation reduce or increase the cognitive burden on the
intensivist? Studies examining the presentation format of explanations were
analyzed through this lens (Isparan Shanthi et al., 2024).

2.2.5.3 Assessment of Risk of Bias and Quality

While standard quality assessment tools (like QUADAS-2) are designed for diag-
nostic accuracy studies, they are not fully adapted for XAI studies. Therefore,
this review assessed the quality of XAI reporting based on the “Doshi-Velez and
Kim” framework for interpretability evaluation (Doshi-Velez & Kim, 2018). This
involves checking if the study performed: * Application-Grounded Evalua-
tion: Testing with real clinicians in real tasks. * Human-Grounded Evalua-
tion: Testing with lay humans or simplified tasks. * Functionally-Grounded
Evaluation: Using proxy metrics (e.g., sensitivity analysis) without human
subjects.

This tiered approach allows for a nuanced critique of the current state of evi-
dence, highlighting the gap between technical feasibility (functional evaluation)
and clinical reality (application evaluation).
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2.2.6 Ethical Considerations and Limitations of Methodol-
ogy
Although this scoping review involves the synthesis of existing literature and
does not directly involve human subjects, the ethical implications of the included
technologies are a central theme of the analysis.

2.2.6.1 Ethical Analysis Framework

The review explicitly sought to identify how studies addressed ethical concerns
related to “black-box” medicine. This includes issues of accountability (who is
responsible if an XAI-supported decision goes wrong?) and fairness (does the
XAI reveal or conceal bias against protected groups?). The framework for this
analysis draws on the work of Mirchandani (Mirchandani, 2025), which empha-
sizes the interplay between explainability, interpretability, and accountability
in sectoral applications.

2.2.6.2 Methodological Limitations

Several limitations inherent to the scoping review methodology must be acknowl-
edged. First, the restriction to English-language publications may exclude rele-
vant developments in non-English speaking regions. Second, the rapid pace of
publication in AI means that any review is a snapshot in time; however, the
inclusion of pre-print servers like arXiv helps mitigate this lag.

Third, the “publication bias” in computer science tends to favor positive results
(i.e., methods that work), potentially obscuring negative findings where XAI
failed to improve–or even harmed–clinical decision-making. Finally, the lack
of standardized reporting guidelines for XAI studies makes cross-study compar-
ison difficult. Unlike clinical trials which follow CONSORT, ML studies vary
wildly in how they report hyperparameters, data preprocessing, and explanation
generation settings.

2.2.7 Integration with Thesis Objectives
This methodology chapter lays the foundation for the subsequent results and
discussion chapters. By establishing a rigorous protocol for identifying and
categorizing XAI methods, the review aims to construct a comprehensive map of
the “AI-Enabled ICU” (Singh, 2025). The data extraction strategy is specifically
designed to feed into the gap analysis, highlighting the disconnect between the
sophisticated attention mechanisms developed in engineering labs (Liu et al.,
2024) and the practical needs of bedside clinicians for actionable, trustworthy,
and safe decision support (Jia et al., 2021)(Koebe et al., 2025).

The following sections will present the results of this scoping review, organized
according to the taxonomy defined in Section 2.2.5.1, followed by a critical
discussion of the implications for future research and clinical practice.
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2.2.8 Summary of Methodological Approach
To summarize the methodological rigor applied in this thesis, Table 2 provides
an overview of the key methodological components and their corresponding
implementation details.

Component Implementation Detail Reference / Standard
Review Type Scoping Review

(Narrative Synthesis)
Arksey & O’Malley
(Arksey & O’Malley,
2005)

Reporting PRISMA-ScR
Checklist

Tricco et al. (Tindall,
2019)

Search Scope PubMed, IEEE,
Scopus, arXiv
(2018-2024)

Comprehensive
coverage of CS and
Med

Screening Dual-stage
(Title/Abstract,
Full-text)

Minimizing selection
bias

Synthesis Qualitative,
Taxonomy-based

Somani et al. (Somani
et al., 2023)

Quality Check Tiered Evaluation
(Application/Human/Functional)

Doshi-Velez & Kim
(Doshi-Velez & Perlis,
2019)

Table 2: Summary of the methodological framework employed in this thesis.

This structured approach ensures that the subsequent analysis of results is
grounded in a reproducible and scientifically sound process, capable of sup-
porting the complex interdisciplinary arguments required to advance the field
of Explainable AI in critical care.

2.2.9 Specific Considerations for ICU Data Types
The methodology also required specific considerations for the unique nature of
ICU data, which influenced both the search strategy and the data extraction
process. ICU data is characterized by its high frequency, multi-modality, and
temporal dependency, distinguishing it from standard clinical datasets.

2.2.9.1 Handling Multimodal Data Sources

The review specifically sought to identify how XAI methods handle the inte-
gration of diverse data types commonly found in the ICU. This includes: *
Structured Tabular Data: Electronic Health Records (EHR), demograph-
ics, and lab results. * High-Frequency Waveforms: ECG, plethysmography,
and invasive blood pressure signals. * Unstructured Text: Clinical notes and
nursing assessments. * Imaging: Chest X-rays and ultrasound scans.
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Escudero-Arnanz et al. (Escudero-Arnanz et al., 2025) highlight the emerging
need for multimodal interpretable models. Consequently, the data extraction
protocol included specific fields to record whether an XAI method was unimodal
(explaining only one data type) or multimodal (explaining the fusion of data).
This is critical because standard methods like SHAP are often computationally
prohibitive or conceptually limited when applied to high-dimensional waveform
data or complex multimodal fusion architectures (Bieniek-Kaczorek et al., 2025).

2.2.9.2 Temporal Interpretability

Given that patient status in the ICU is highly dynamic, the review placed
a strong emphasis on “temporal interpretability.” Standard static predictions
(e.g., “mortality risk at admission”) are less actionable than dynamic predictions
(e.g., “risk of sepsis in the next 4 hours”). Therefore, the methodology included
a specific focus on extracting information about how studies handled the time
dimension.

This involved identifying studies using Recurrent Neural Networks (RNNs) or
Long Short-Term Memory (LSTM) networks, which are standard for time-series
data (Bon & Cardot, 2011). The review sought to determine if the explanations
provided by these models could highlight when a critical event was predicted
to occur, not just if it would occur. Methods such as attention mechanisms in
LSTMs (Adebayo, 2025) or temporal feature importance maps were specifically
flagged during the screening process as high-value targets for analysis.

2.2.10 Addressing the “Black Box” in Clinical Workflows
The ultimate goal of the chosen methodology is to bridge the gap between techni-
cal capability and clinical reality. By systematically mapping the literature, this
review aims to deconstruct the “black box” problem not just as a mathematical
issue, but as a workflow issue.

The methodology acknowledges that an explanation is only as good as its recep-
tion by the user. Therefore, the review protocol explicitly looks for evidence of
“Personalized XAI” or adaptive explanations that adjust based on the user’s ex-
pertise level, as suggested by Mohammed (Mohammed, 2025). This user-centric
perspective is integrated into the data synthesis phase, where studies are evalu-
ated on whether they treat the clinician as a passive recipient of information or
an active partner in the diagnostic process (Isparan Shanthi et al., 2024).

By rigorously adhering to this methodological framework, the thesis ensures
that the resulting insights are strong, comprehensive, and directly applicable to
the challenges of modern intensive care medicine. The focus remains steadfast
on identifying XAI solutions that enhance safety, improve trust, and ultimately
contribute to better patient outcomes in the high-stakes environment of the
ICU.
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2.3 Analysis and Results
The scoping review process identified a diverse body of literature addressing the
integration of Explainable Artificial Intelligence (XAI) within intensive care unit
(ICU) settings. The analysis of these studies reveals a rapidly evolving environ-
ment where the focus is shifting from raw predictive performance toward model
transparency, safety assurance, and clinical utility. This section presents the
synthesis of findings categorized by methodological approaches, clinical appli-
cation domains, and evaluation metrics regarding human-AI interaction. The
results underscore the critical tension between the complexity of deep learning
architectures required for high-dimensional ICU data and the interpretability
necessities of bedside clinicians.

2.3.1 Bibliometric and Methodological Overview

The screening process yielded a final set of included studies that predominately
uses retrospective analyses of large critical care datasets (such as MIMIC-III/IV
or eICU), with a growing subset of papers addressing prospective validation
and human-factors evaluation. The literature demonstrates a clear bifurcation
in methodological strategy: post-hoc explanation methods applied to complex
“black box” models versus the development of intrinsically interpretable archi-
tectures.

2.3.1.1 Distribution of XAI Techniques The analysis indicates that
model-agnostic, post-hoc explanation methods remain the most frequently
deployed technique in the ICU domain. This prevalence is largely driven by
the dominance of deep learning models–specifically Long Short-Term Memory
(LSTM) networks and Convolutional Neural Networks (CNN)–which achieve
current performance on temporal vital sign data but lack inherent transparency.

Feature attribution methods, particularly SHapley Additive exPlanations
(SHAP), appear as the standard for providing local interpretability. For
instance, recent work by Long and Tong (Long & Tong, 2025) demonstrates
the utility of integrating SHAP with machine learning models to predict 28-day
mortality. Their approach highlights the necessity of decomposing complex
physiological interactions into individual feature contributions, thereby allowing
clinicians to validate whether the model is relying on clinically relevant markers
or confounding variables. Similarly, Adebayo (Adebayo, 2025) proposes a
hybrid approach combining LSTM architectures with SHAP, specifically
tackling the opacity of recurrent neural networks when processing Electronic
Health Record (EHR) data.

However, a parallel trend is emerging involving attention-based mechanisms,
which offer “interpretation by design” rather than post-hoc approximation.
Studies such as those by Liu et al. (Liu et al., 2024) uses model-agnostic
attention maps to interpret vital sign forecasting for sepsis prediction. These
methods are particularly relevant for time-series data, as they can highlight
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specific temporal windows that contributed most significantly to a prediction,
aligning well with the clinician’s need to understand the trajectory of patient
deterioration.

XAI Category
Dominant
Techniques

Primary
Application Key Citations

Post-hoc
Attribution

SHAP, LIME,
Permutation
Importance

Mortality
prediction, Risk
stratification

(Long & Tong,
2025)(Adebayo,
2025)(Huang,
2025)

Attention
Mechanisms

Temporal
Attention,
Self-Attention

Sepsis onset,
Vital sign
forecasting

(Liu et al.,
2024)(Ghaith,
2024)

Causal Models Causal Discovery,
Counterfactuals

Treatment effect
estimation,
Deterioration

(Cheng et al.,
2025)(Zhang,
2023)

Rule/Tree
Extraction

Decision Trees,
Rule lists

Triage, Protocol
adherence

(Somani et al.,
2023)

Visual
Saliency

Grad-CAM,
Layer-wise
Relevance

Medical imaging
(CXR, MRI)

(SANO,
2022)(Naik et al.,
2025)

Table 1: Taxonomy of XAI methods identified in the reviewed literature, catego-
rized by technical approach and primary clinical utility.

2.3.1.2 The Shift Toward Causal Interpretability A significant finding
in the recent literature is the critique of correlation-based explanations. Tra-
ditional feature importance methods (like standard SHAP) may highlight vari-
ables that are correlated with the outcome but are not causal drivers, poten-
tially leading to dangerous clinical interventions. Zhang (Zhang, 2023) argues
for “Causal Explainable AI,” emphasizing that in medical decision-making, un-
derstanding the mechanism is superior to merely identifying associations.

This theoretical shift is operationalized in recent empirical work. Cheng et
al. (Cheng et al., 2025) introduced causally-informed deep learning frameworks
for outcomes prediction in critical care. Their results suggest that incorporat-
ing causal graphs into the learning process not only improves generalizability
across different hospital systems but also produces explanations that are more
aligned with pathophysiological reasoning. This represents a maturity in the
field, moving beyond “what the model looked at” to “why the model thinks this
causes that.”

2.3.2 Clinical Application Domains

The application of XAI in the ICU is not uniform; rather, it is concentrated
in high-stakes domains where early intervention can significantly alter patient
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trajectories. The review identified four primary clusters of clinical application:
Mortality Prediction, Sepsis Management, Respiratory Support, and Hemody-
namic Monitoring.

2.3.2.1 Mortality and Risk Stratification Mortality prediction remains
the most common benchmark task for XAI validation due to the availability of
labeled outcome data. The analysis reveals that XAI is primarily used here to
build trust in the risk score rather than to direct specific therapies.

Long and Tong (Long & Tong, 2025) focused on 28-day mortality, utilizing
SHAP to reveal how initial physiological features influence long-term survival
probabilities. Their findings suggest that while traditional scoring systems (like
APACHE or SOFA) use rigid linear weightings, ML models capture non-linear
interactions between vitals. For example, a slightly elevated heart rate might
be benign in isolation but highly predictive of mortality when combined with
specific trends in lactate levels–a nuance that SHAP values can visualize for the
clinician.

Furthermore, Wei et al. (Wei et al., 2025) developed an interpretable model
specifically for in-hospital mortality in patients with ventilator-associated pneu-
monia (VAP). This study highlights a critical niche: sub-population specific risk
models. By focusing on VAP, the explanations generated are context-specific, al-
lowing intensivists to distinguish between mortality risks driven by the infection
versus underlying comorbidities. The authors emphasize that interpretability in
this context serves as a safety check, ensuring the model isn’t learning spurious
correlations (e.g., predicting higher survival simply because a patient was trans-
ferred to a lower-acuity ward).

2.3.2.2 Sepsis Detection and Management Sepsis prediction represents
a domain where “black box” alarms contribute significantly to alarm fatigue.
Consequently, the literature emphasizes XAI as a filter for relevance. Liu et
al. (Liu et al., 2024) demonstrated that interpretable vital sign forecasting using
attention maps could identify sepsis onset earlier than traditional rule-based
systems. Crucially, the attention maps provide a visual “audit trail,” showing
which specific drop in blood pressure or spike in temperature triggered the alert.

Beyond prediction, Reinforcement Learning (RL) is being explored for sepsis
treatment recommendation. Huang et al. (Huang et al., 2022) and Saulières et
al. (Saulières et al., 2023) discuss the challenge of explaining RL policies. Unlike
supervised learning (which predicts an outcome), RL suggests an action (e.g.,
“administer fluids”). Explaining why an agent recommends a specific dosage
of vasopressors is complex. Saulières et al. (Saulières et al., 2023) propose
“predictive explanation,” where the model justifies its action by predicting the
future state (e.g., “I recommend increasing norepinephrine because I predict it
will stabilize Mean Arterial Pressure (MAP) within 30 minutes”). This forward-
looking explanation aligns closely with clinician thought processes.
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2.3.2.3 Respiratory Support and Airway Management Mechanical ven-
tilation decisions involve complex trade-offs between oxygenation targets and
the risk of lung injury. Saykat et al. (Saykat et al., 2025) applied ML and
XAI to predict intubation needs. In this high-stress scenario, a false negative
(failing to intubate) can be fatal, while a false positive exposes the patient to un-
necessary procedural risk. The authors utilized feature importance analysis to
demonstrate that their model prioritizes respiratory rate trends and oxygen sat-
uration stability, providing clinicians with a “reasoning” that matches clinical
guidelines.

Similarly, Koebe et al. (Koebe et al., 2025) addressed the prediction of hypoten-
sion and the subsequent need for catecholamine therapy. Their work criticizes
standard models that rely on fixed MAP thresholds. By using XAI, they demon-
strate that the context of the blood pressure (e.g., relative to the patient’s base-
line) drives the model’s prediction, offering a more personalized alert system
that attempts to mitigate both undertreatment and overtreatment.

Clinical Domain
Primary XAI
Goal

Key
Finding/Outcome Reference

Mortality Validation of risk
factors

Non-linear
interactions of
physiological
features
identified via
SHAP.

(Long & Tong,
2025)

Sepsis Early warning &
Trust

Attention maps
visualize
temporal trigger
points for sepsis
alerts.

(Liu et al., 2024)

Ventilation Decision support
(Intubation)

Feature analysis
confirms
alignment with
respiratory
distress
guidelines.

(Saykat et al.,
2025)

Hemodynamics Therapy
initiation

Personalized
thresholds for
catecholamine
initiation
predicted over
fixed rules.

(Koebe et al.,
2025)
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Clinical Domain
Primary XAI
Goal

Key
Finding/Outcome Reference

Infection
(VAP)

Risk
stratification

Sub-population
specific
interpretability
for ventilator-
associated
pneumonia.

(Wei et al., 2025)

Table 2: Analysis of XAI applications across major critical care domains, high-
lighting the specific clinical goals and findings from the reviewed literature.

2.3.3 Evaluation of Effectiveness and Human Factors

A critical component of this analysis involves evaluating whether XAI actually
improves clinical performance or user trust. The literature review indicates a
discrepancy between technical metrics of explanation quality (fidelity, stability)
and human-centric metrics (trust, cognitive load, actionability).

2.3.3.1 Trust and Cognitive Load Trust is a central mediator in the adop-
tion of AI systems. Isparan Shanthi et al. (Isparan Shanthi et al., 2024) in-
vestigated the role of trust in human-AI interaction in healthcare, finding that
Perceived Usefulness (PU) and Perceived Ease of Use (PEOU) are critical an-
tecedents. However, they also note the moderating influence of cognitive load.
In an ICU setting, clinicians are often under extreme cognitive pressure. Com-
plex explanations (e.g., detailed feature contribution matrices) might paradoxi-
cally decrease trust or utility if they increase cognitive burden.

This finding is supported by Mohammed (Mohammed, 2025), who argues for
“Adaptive Explainable AI.” The study posits that static explanations are in-
sufficient because users have varying levels of expertise. A senior intensivist
might require a causal graph showing pathophysiological mechanisms, while a
junior nurse might benefit more from a highlighted trend line of vital signs.
Mohammed’s framework suggests that XAI systems must profile the user and
adjust the complexity of the explanation accordingly to maintain trust without
overwhelming the user.

2.3.3.2 Actionability and Personalization The concept of “actionability”
is emerging as a key metric. An explanation is only useful if it informs a deci-
sion. Bashir et al. (Bashir et al., 2025), while focusing on fetal scans, provide
a relevant framework for “actionable concepts” that is highly applicable to the
ICU. They validated their XAI using a multi-level, cross-institutional approach,
demonstrating that explanations phrased in clinical concepts (rather than math-
ematical pixel importance) led to better end-user evaluation.
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Similarly, Islam et al. (Islam et al., 2025) uses knowledge representation tech-
niques combined with ML to provide personalized treatment recommendations.
Their analysis suggests that connecting ML outputs to established medical
knowledge graphs enhances the perceived validity of the recommendation. When
a model can explain a sepsis alert by linking it to “rising lactate” and “refractory
hypotension”–terms embedded in the medical ontology–it bridges the semantic
gap between data science and medicine.

2.3.3.3 Visualization and Interface Design The modality of explanation
delivery significantly impacts its effectiveness. Sano (SANO, 2022) and Naik et
al. (Naik et al., 2025) explore visual saliency methods like Gradient-Weighted
Class Activation Mapping (Grad-CAM) and Layer-Wise Relevance Propagation
(LRP). While primarily applied to imaging (facial attractiveness in Sano; Brain
MRI in Naik), these techniques are being adapted for ICU time-series imaging
(e.g., spectrograms of EEG or waveforms). The analysis shows that “heat map”
styles of explanation are intuitive for spatial data but can be ambiguous for
tabular clinical data, necessitating different visualization strategies for EHR-
based models.

2.3.4 Technical and Methodological Challenges

Despite the promise of XAI, the review identified substantial technical hurdles
that persist in the literature. These challenges threaten the validity and relia-
bility of explanations in safety-critical environments.

2.3.4.1 The Fidelity-Interpretability Trade-off A recurring theme is the
trade-off between the accuracy of the underlying model and the faithfulness of
the explanation. Adebayo (Adebayo, 2025) attempts to bridge this gap using
hybrid LSTM-SHAP models, but acknowledges that post-hoc approximations
are never perfectly faithful to the underlying non-linear logic.

Ideally, the explanation model 𝑔 should approximate the black-box model 𝑓
such that 𝑔(𝑥) ≈ 𝑓(𝑥) locally. However, in high-dimensional ICU data, the local
decision boundary can be extremely rugged. Huang (Huang, 2025) introduces
residual permutation tests to better assess feature importance, arguing that
standard permutation methods can be biased when features are highly collinear–
a distinct characteristic of physiological data (e.g., systolic and diastolic blood
pressure are highly correlated). If an XAI method fails to account for this
collinearity, it may arbitrarily assign importance to one variable over another,
leading to unstable and misleading explanations.

2.3.4.2 Multimodal Data Integration Modern ICUs generate multimodal
data: static demographics, time-series vitals, clinical notes, and imaging.
Escudero-Arnanz et al. (Escudero-Arnanz et al., 2025) tackle the challenge
of “Multimodal interpretable data-driven models” for predicting multidrug
resistance. They highlight the difficulty of generating a coherent explanation
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that spans different data types. For instance, explaining a prediction based
on both a chest X-ray feature and a trend in white blood cell count requires a
unified semantic framework that most current XAI methods (which are often
modality-specific) lack.

Ghaith (Ghaith, 2024) proposes the “Triple Attention Transformer” to advance
contextual coherence. While applied to dialogue systems, the architectural inno-
vation is relevant for processing clinical notes in the ICU. The ability to maintain
long-term context (e.g., a patient’s history from admission) while attending to
immediate data points is important. XAI methods for these transformer archi-
tectures must be able to visualize attention weights across these vast temporal
distances to be clinically meaningful.

2.3.4.3 Real-Time Constraints The ICU is a real-time environment. Singh
(Singh, 2025) outlines an “AI-ICU” framework for real-time decision support. A
significant barrier identified is the computational cost of generating explanations.
Methods like Shapley values are computationally expensive (NP-hard in exact
form) and require approximation for large datasets. Calculating SHAP values
for a complex LSTM model every second for every patient in a 20-bed ICU
poses a massive latency challenge. The literature suggests that for XAI to
be viable in real-time monitoring, more efficient approximation algorithms or
intrinsic interpretability methods (like attention weights, which are computed
during the forward pass) are necessary.

2.3.4.4 Safety and Regulatory Compliance Jia et al. (Jia et al., 2021)
discuss the role of explainability in assuring the safety of ML in healthcare. They
argue that XAI is not just a user interface feature but a safety requirement. In
the absence of formal specifications for what a neural network “should” learn,
explanations serve as a proxy for verification. If an explanation reveals that a
model is predicting mortality based on the “hospital site” rather than physiology,
it flags a safety violation (domain shift).

Furthermore, Vidal et al. (Vidal et al., 2024) introduce the concept of “Verifying
Machine Unlearning.” In the context of privacy regulations (like GDPR) or
correcting model errors (e.g., if a model learned from corrupted data), it is
necessary to “unlearn” specific data points. Vidal et al. Demonstrate that XAI
can be used to verify that the unlearning process was successful–i.e., that the
model no longer relies on the deleted information. This is a novel application
of XAI relevant to the governance of clinical models.

2.3.5 Synthesis of Results

The synthesis of the analyzed literature points to a maturation of the XAI field
within critical care. We observe a transition from “proof of concept” studies–
where standard XAI tools are simply applied to standard datasets–to “domain-
aware” XAI, where methods are tailored to the specific constraints of the ICU
(temporal dependencies, high risk, multimodal data).
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2.3.5.1 Quantitative Performance of XAI-Enhanced Models While
XAI is often thought to come at a cost to performance, several studies reviewed
suggest that interpretable architectures can achieve competitive accuracy. For
example, the causally-informed models by Cheng et al. (Cheng et al., 2025) and
the hybrid LSTM approaches by Adebayo (Adebayo, 2025) report high predic-
tive performance (often AUC > 0.85 for mortality/sepsis tasks) while gaining
the benefit of transparency. This challenges the assumption that clinicians must
choose between accuracy and interpretability.

2.3.5.2 The “Human-in-the-Loop” Reality The results strongly suggest
that the “Black Box” is not merely a technical problem but a socio-technical
one. The work by Isparan Shanthi (Isparan Shanthi et al., 2024), Mohammed
(Mohammed, 2025), and Mirchandani (Mirchandani, 2025) collectively indicates
that the style and timing of the explanation are as important as the mathemat-
ical correctness. Mirchandani’s qualitative analysis of XAI usability specifically
highlights accountability–clinicians need explanations to justify their decisions
for legal and ethical accountability. An XAI system that provides a probability
score without a rationale leaves the clinician solely liable for a decision they
cannot explain.

2.3.5.3 Gaps in Current Research Despite the progress, significant gaps
remain. There is a paucity of prospective randomized controlled trials (RCTs)
evaluating the impact of XAI on patient outcomes. Most evaluation is performed
in silico (looking at model metrics) or via offline user studies (clinicians looking
at static cases). There is limited evidence on how XAI alerts function in the
chaotic, alarm-fatigued environment of a live ICU. Additionally, the integration
of fluid therapy guidelines–as discussed by Dessap et al. (Dessap et al., 2025)–
into XAI logic remains an open challenge; current models often predict outcomes
but fail to guide adherence to complex, evolving clinical protocols.

Evaluation Dimension Metric/Approach
Key Insight from
Literature

Computational Latency, FLOPS Real-time calculation
of Shapley values is a
bottleneck for
continuous monitoring
(Singh, 2025).

Cognitive Cognitive Load Index Complex visualizations
can increase load and
reduce trust under time
pressure (Isparan
Shanthi et al., 2024).
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Evaluation Dimension Metric/Approach
Key Insight from
Literature

Safety Domain Shift Detection XAI serves as a “safety
valve” to detect
reliance on spurious
correlations (Jia et al.,
2021).

Privacy Unlearning Verification XAI can verify that
models have
“forgotten” sensitive or
erroneous data (Vidal
et al., 2024).

Table 3: Summary of evaluation dimensions for XAI in ICU settings, contrasting
computational constraints with human-centric and safety requirements.

2.3.6 Detailed Analysis of Specific Methodological Clusters

To provide deeper insight, we further analyze specific methodological clusters
identified in the review, examining the mechanisms by which they attempt to
solve the interpretability problem in intensive care.

2.3.6.1 Feature Importance and Permutation Analysis Feature impor-
tance remains the bedrock of clinical XAI. The logic is intuitive: if a variable
is important, shuffling its values should degrade model error. However, Huang
(Huang, 2025) provides a critical statistical analysis of “Residual Permutation
Tests.” In the ICU, variables are deeply interconnected (e.g., heart rate and
cardiac output). Standard permutation breaks this structure, creating “impos-
sible” patients (e.g., high cardiac output with zero heart rate) and evaluating
the model on this out-of-distribution data. Huang’s results suggest that many
“standard” feature importance rankings in the literature may be biased. This
has profound implications for clinical trust–if a model claims “Lactate” is the
top predictor, but the calculation method is flawed due to correlation with “pH,”
the clinical insight is compromised.

2.3.6.2 Time-Series Interpretability The temporal dimension is what dis-
tinguishes ICU data from general clinical data. Bon and Cardot (Bon & Cardot,
2011) laid early groundwork for Recurrent Neural Networks (RNNs) in time se-
ries. Modern applications, such as those by Escudero-Arnanz (Escudero-Arnanz
et al., 2025) and Liu (Liu et al., 2024), have had to adapt XAI for this temporal
depth. The analysis shows that “Time-Step Importance” is a critical metric.
It is not enough to know that blood pressure is important; clinicians need to
know when it became important. Did the drop in pressure 2 hours ago trigger
the alarm, or the fluctuation 5 minutes ago? The results from attention-based
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studies (Liu et al., 2024) suggest that models focusing on recent trends (last
2-4 hours) tend to align better with clinical intuition for acute events like sepsis,
whereas mortality models (Long & Tong, 2025) often draw on baseline admission
data.

2.3.6.3 The Role of Natural Language Processing (NLP) While vital
signs are central, clinical notes contain the narrative. Somani et al. (Somani
et al., 2023) and Ghaith (Ghaith, 2024) highlight the role of interpretability
in NLP. In the ICU, nursing notes often contain soft signals of deterioration
(e.g., “patient appears anxious”) before vitals crash. The analysis of “Triple
Attention Transformers” (Ghaith, 2024) suggests that capturing the coherence
of these dialogues or notes requires specialized attention heads. XAI in this
domain visualizes the “attention” on specific words. For example, highlighting
the word “mottling” in a nursing note as a driver for a sepsis prediction provides
an immediately actionable and verifiable explanation for the physician.

2.3.7 Conclusion of Analysis

In summary, the analysis of the selected literature reveals that XAI in the ICU is
moving towards a “Hybrid-Adaptive” model. “Hybrid” in the sense of combining
domain knowledge (causal graphs, medical ontologies) with data-driven learning
(Deep Learning, RL), and “Adaptive” in the sense of tailoring explanations to
the user’s role and cognitive state. The dominant reliance on SHAP is being
challenged by the need for causal validity and real-time efficiency. The results
unequivocally show that while XAI has the potential to mitigate the “Black Box”
risk, its current implementation often faces hurdles regarding computational
feasibility, collinearity handling, and integration into the high-velocity clinical
workflow. Future success appears linked not to developing new mathematical
explanation methods, but to better integration of existing methods with clinical
reasoning frameworks and safety assurance protocols.

The following section (Discussion) will further interpret these findings in the
context of the broader healthcare system and provide specific recommendations
for future research directions.

2.3.8 Statistical and Quantitative Synthesis
Although this is a scoping review, a quantitative synthesis of the reported perfor-
mance metrics from the included studies provides a benchmark for the current
current in XAI-enabled ICU models.

2.3.8.1 Performance Metrics of Interpretable Models A pervasive con-
cern in the AI community is the “accuracy-interpretability trade-off”–the notion
that simpler, interpretable models must necessarily perform worse than complex
black boxes. The literature reviewed here offers data to contest this.
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For instance, in the domain of mortality prediction, Long and Tong (Long &
Tong, 2025) report that their ML models utilizing SHAP for feature selection
and interpretation achieved strong predictive power. While specific AUC values
vary by dataset (MIMIC vs. EICU), the trend indicates that identifying and
removing noisy features via XAI analysis can actually improve generalization.
Similarly, Adebayo (Adebayo, 2025) demonstrates that Hybrid LSTM-SHAP
models maintain high fidelity to the underlying data patterns.

In the context of intubation prediction, Saykat et al. (Saykat et al., 2025) utilized
ML classifiers that, when subjected to interpretability analysis, showed high
sensitivity. The ability to visualize the decision boundary allowed the authors
to tune the threshold for intervention, optimizing the balance between sensitivity
(catching all patients needing intubation) and specificity (avoiding unnecessary
procedures).

2.3.8.2 Reliability of Explanations Quantifying the reliability of the ex-
planation itself is harder. However, studies like those by Naik et al. (Naik et
al., 2025) using Layer-Wise Relevance Propagation (LRP) provide quantitative
heatmaps. The “relevance scores” propagated back from the output layer serve
as a quantitative metric of contribution. In image classification tasks (analo-
gous to analyzing spectrograms of vital signs), these scores must sum up to
the total output score (conservation of relevance). This mathematical property
of LRP makes it a more rigorous, albeit complex, method compared to simple
sensitivity analysis.

Furthermore, the work on “Residual Permutation Tests” by Huang (Huang,
2025) introduces a statistical rigor to feature importance. By controlling for
the correlation structure of the covariates, this method produces p-values for
feature importance. This is a important quantitative advancement: it allows a
researcher to say “Heart Rate is a significantly important predictor (𝑝 < 0.05)”
rather than just “Heart Rate had a high SHAP value.” This moves XAI from a
qualitative art to a quantitative science.

2.3.9 Emerging Paradigms: From Observation to Action

The final cluster of results pertains to the shift from observational XAI (explain-
ing predictions) to actionable XAI (optimizing interventions).

2.3.9.1 Optimization and Control While most ICU XAI focuses on diag-
nosis, Reddy Desani (Reddy Desani, 2023) and Park et al. (Park et al., 2024)
discuss XAI in the context of optimization and control systems (Supply Chain
and Water Treatment, respectively). While these are distinct domains, the
underlying mathematical frameworks–optimizing a coagulant dose or a supply
route–are mathematically homologous to optimizing a drug dose (e.g., insulin
or heparin) in the ICU.

The key finding from these adjacent fields, which is beginning to permeate ICU
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literature (e.g., via Huang et al. (Huang et al., 2022) on sepsis RL), is that
explanations for control policies must differ from explanations for predictions.
A prediction explanation says: “Risk is high because Lactate is high.” A control
explanation must say: “I am increasing the dose to lower the Lactate.” The
literature indicates that ICU XAI is in the infancy of this transition. The
work by Koebe et al. (Koebe et al., 2025) on catecholamine therapy is a prime
example of this emerging paradigm, where the model predicts the need for action
(therapy initiation) rather than just a passive state (hypotension).

2.3.9.2 The Role of Sensors and Hardware Finally, the quality of XAI is
bounded by the quality of input data. Bieniek-Kaczorek et al. (Bieniek-Kaczorek
et al., 2025) describe next-generation photonic interrogators for vital signs. As
sensor technology improves, the granularity of data increases. XAI methods
must scale to handle this increased resolution. An explanation that says “Heart
Rate Variability (HRV) is important” is useful; an explanation that identifies
specific high-frequency spectral components of the HRV waveform (captured
by advanced sensors) as the driver of risk is far more precise. The literature
suggests a co-evolution of sensor technology and XAI capability will be required
for the next generation of ICU monitoring.

In conclusion, the analysis confirms that XAI in the ICU is a multi-faceted
domain. It is not merely about applying SHAP to a Random Forest. It in-
volves a complex interplay of causal reasoning (Cheng et al., 2025)(Zhang, 2023),
temporal analysis (Liu et al., 2024)(Ghaith, 2024), human-factors engineering
(Isparan Shanthi et al., 2024)(Mohammed, 2025), and rigorous statistical vali-
dation (Huang, 2025). The results highlight that while great strides have been
made in technical capability, the “last mile” of implementation–integrating these
tools safely and effectively into the cognitive workflow of the intensivist–remains
the primary challenge for the field.

2.4 Discussion
The scoping review of Explainable Artificial Intelligence (XAI) in intensive care
unit (ICU) settings reveals a rapidly evolving environment where algorithmic
sophistication is increasingly balanced against the imperative for clinical trans-
parency. The findings from the literature presented in section 2.3 indicate that
while deep learning models achieve superior predictive performance in critical
care tasks, their clinical adoption remains hindered by the “black box” opacity
described in the theoretical framework of section 2.1. This discussion synthe-
sizes the extracted data to evaluate the state of XAI in critical care, interpreting
the shift from post-hoc interpretability to causal reasoning, analyzing the hu-
man factors determining implementation success, and identifying the trajectory
toward actionable clinical decision support.
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2.4.1 The Convergence of Accuracy and Interpretability
A central theme identified in the literature review (section 2.1) was the historical
trade-off between model accuracy and interpretability. Early critical care models
(e.g., APACHE, SOFA) offered high transparency but limited predictive power
compared to modern machine learning. The results synthesized in section 2.3
demonstrate that this trade-off is becoming less rigid through the application
of advanced XAI techniques.

2.4.1.1 Hybrid Architectures and Performance Preservation

Recent literature challenges the notion that high-performance models must be
opaque. The work by Adebayo (Adebayo, 2025) on hybrid Long Short-Term
Memory (LSTM) networks demonstrates that it is possible to maintain the
temporal predictive power of deep learning for ICU mortality prediction while
integrating SHAP (SHapley Additive exPlanations) to provide feature-level im-
portance. This aligns with the foundational concepts discussed in section 2.1,
confirming that interpretability layers can be effectively superimposed onto com-
plex architectures without degrading the area under the receiver operating curve
(AUROC). Furthermore, Long and Tong (Long & Tong, 2025) reinforce this
finding, showing that integrating machine learning with SHAP for 28-day mor-
tality prediction allows clinicians to validate model logic against physiological
expectations–such as the correlation between lactate levels and mortality risk–
thereby bridging the gap between statistical output and clinical intuition.

2.4.1.2 Safety and Accountability in High-Stakes Environments

The imperative for XAI in the ICU extends beyond curiosity to patient safety.
As argued by Jia et al. (Jia et al., 2021), the lack of a pre-defined specifica-
tion for machine learning validity in safety-critical systems makes explainability
a primary mechanism for safety assurance. In the ICU, where an algorithmic
error can lead to inappropriate vasoactive drug administration or delayed intu-
bation, the ability to audit the “reasoning” of a model is a safety requirement.
The literature suggests that XAI serves as a safeguard against “Clever Hans”
phenomena, where models might learn spurious correlations (e.g., associating
a specific scanner type with severity) rather than true pathology. Mirchan-
dani (Mirchandani, 2025) further emphasizes that accountability is inextricably
linked to interpretability; without understanding why a decision was recom-
mended, liability in the event of adverse outcomes remains legally ambiguous.

2.4.2 Methodological Evolution: From Association to Cau-
sation
The categorization of XAI methods in section 2.3 reveals a dominance of asso-
ciative, feature-importance methods, but also highlights a critical pivot toward
causal and attention-based explanations.
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2.4.2.1 Limitations of Feature Importance (SHAP/LIME)

While SHAP remains the most ubiquitous method in the reviewed literature
(Long & Tong, 2025)(Adebayo, 2025), its limitations in the ICU context are be-
coming apparent. Feature importance scores indicate correlation, not causation.
For instance, a model might identify “low blood pressure” as a predictor of mor-
tality, but this does not explicitly guide the clinician to increase blood pressure
if the underlying cause is not addressed. Huang (Huang, 2025) addresses the
statistical rigor of these feature importance measures through residual permuta-
tion tests, arguing that standard importance metrics in “black-box” algorithms
require strong validation to avoid misleading clinicians with noise. The reliance
on static feature weights can be reductive in the dynamic environment of the
ICU, where the significance of a vital sign (e.g., heart rate) depends heavily on
the temporal context and concurrent interventions.

2.4.2.2 The Emergence of Causal and Attention-Based XAI

To address the limitations of associative XAI, the literature indicates a shift
toward Causal Explainable AI (CXAI). Zhang (Zhang, 2023) and Cheng et
al. (Cheng et al., 2025) argue that for XAI to be truly useful in medicine, it
must reflect causal mechanisms. Cheng et al. (Cheng et al., 2025) demonstrate
that causally-informed deep learning improves the generalizability of outcome
prediction in critical care. By constraining the model to learn causal structures
rather than mere correlations, these systems provide explanations that are more
strong to distribution shifts–a common occurrence when models trained on one
ICU population (e.g., MIMIC-IV) are deployed in another hospital system.

Additionally, attention mechanisms in deep learning offer a more intrinsic form
of interpretability for temporal data. Liu et al. (Liu et al., 2024) uses model-
agnostic attention maps for sepsis prediction. Unlike post-hoc methods that
approximate the model, attention mechanisms highlight the specific time-steps
in a patient’s vital sign history that drove the prediction. This “temporal local-
ization” of risk allows clinicians to see when the deterioration began, providing a
narrative explanation that aligns with the time-series nature of ICU monitoring.

Table 1: Comparison of XAI Methodological Approaches in ICU Literature.

Approach
Key
Techniques

Primary
Benefit

ICU
Limitation

Representative
Source

Associative SHAP, LIME Global/Local
feature
ranking

Lacks causal
link;
correlation
only

(Long &
Tong, 2025),
(Adebayo,
2025)

Attention-
Based

Attention
Maps,
Transformers

Temporal
localization
of risk

Complex
visualization;
high
dimensionality

(Liu et al.,
2024),
(Ghaith,
2024)
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Approach
Key
Techniques

Primary
Benefit

ICU
Limitation

Representative
Source

Causal Structural
Causal
Models
(SCM)

Generalizability;
intervention
planning

Requires
domain
knowledge
graphs

(Cheng et al.,
2025),
(Zhang,
2023)

Visual/Pixel LRP,
Grad-CAM

Image region
highlighting

Limited to
imaging
(CXR, MRI)

(SANO,
2022), (Naik
et al., 2025)

Source: Synthesized from literature findings discussed in Section 2.3.

The transition from associative methods to causal and attention-based methods
represents a maturation of the field. As noted in Table 1, while associative
methods provide a quick overview of risk factors, causal methods are requisite
for planning interventions, a distinction further explored in the context of clinical
actionability.

2.4.3 Clinical Actionability and Decision Support
A critical gap identified in section 2.1 was the disconnect between prediction
and action. The findings from the literature suggest that XAI is beginning to
bridge this gap by moving from purely prognostic models to prescriptive decision
support systems.

2.4.3.1 Prediction vs. Intervention

The majority of reviewed studies focus on risk prediction (e.g., mortality, sepsis
onset). However, the clinical utility of knowing a patient has a “90% risk of
mortality” is limited unless accompanied by modifiable targets. Wei et al. (Wei
et al., 2025) developed an interpretable model for ventilator-associated pneumo-
nia (VAP) mortality. By identifying specific risk factors, the model implicitly
suggests areas for optimization, yet it remains prognostic.

In contrast, recent work moves toward predicting interventions. Saykat et
al. (Saykat et al., 2025) uses machine learning to predict intubation needs.
The explainability here is more directly actionable: if the model explains that
“rapidly declining SpO2 and increasing respiratory rate” are the drivers for the
intubation alert, the clinician can verify these physiological signals immediately.

2.4.3.2 The Frontier of Control Policies

The most significant advancement in actionability is found in Reinforcement
Learning (RL) applications. As highlighted in the results (section 2.3), dis-
tinguishing between explaining a state (patient is sick) and a policy (increase
vasopressors) is important. Koebe et al. (Koebe et al., 2025) present a model
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for predicting catecholamine therapy initiation for hypotension. This shifts the
XAI task from “Why is the patient hypotensive?” to “Why does the patient
need norepinephrine now?” Similarly, Huang et al. (Huang et al., 2022) explore
RL for sepsis treatment with continuous action spaces. Saulières et al. (Saulières
et al., 2023) argue that explaining RL policies requires predictive explanation
mechanisms that can justify the expected utility of an action. This represents
the frontier of ICU XAI: systems that act as “digital colleagues” proposing and
justifying therapeutic plans rather than merely flagging deterioration.

2.4.4 Human Factors: Trust, Cognitive Load, and Workflow
The successful deployment of XAI in the ICU is not solely a technical challenge
but a human-factors engineering problem. The high-pressure, data-rich envi-
ronment of the ICU imposes severe constraints on how information must be
presented.

2.4.4.1 Trust and Cognitive Load

Trust is the currency of clinical adoption. Isparan Shanthi et al. (Isparan Shanthi
et al., 2024) examine the mediating role of trust in human-AI interaction in
healthcare. Their findings suggest that Perceived Usefulness (PU) and Perceived
Ease of Use (PEOU) are critical antecedents to trust. If an XAI interface is
cluttered or the explanation is convoluted, it increases the clinician’s cognitive
load, paradoxically reducing the system’s utility.

The issue of cognitive fatigue is particularly relevant in the ICU. While Eva et
al. (Eva et al., 2022) investigated alarm detection in flight simulators, the paral-
lels to ICU monitoring are substantial. Both environments involve continuous
vigilance and “alarm fatigue.” Their study suggests that XAI must be strong to
the user’s mental state; explanations that require intense concentration to deci-
pher may be ignored during a crisis. Therefore, XAI systems must be designed
to reduce, not add to, the cognitive burden.

2.4.4.2 Personalization of Explanations

A “one-size-fits-all” approach to explanation is increasingly viewed as inade-
quate. Mohammed (Mohammed, 2025) proposes an Adaptive Explainable AI
framework that personalizes explanations based on user expertise levels. In an
ICU setting, a bedside nurse might require an explanation focused on immediate
physiological trends (e.g., “Check the IV line, pressure dropping”), whereas an
intensivist might require a deeper explanation involving probabilistic outcomes
and complex physiological interactions. The literature indicates that the next
generation of ICU decision support systems must be context-aware, tailoring
the granularity and technical depth of the explanation to the specific role of the
user.
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2.4.5 Technical Implementation Challenges
The implementation of XAI in the ICU faces distinct technical hurdles related
to data complexity and multimodal integration.

2.4.5.1 Multimodal Data Integration

ICU patients generate terabytes of data daily, ranging from numerical vital
signs and laboratory values to unstructured clinical notes and medical imag-
ing. Escudero-Arnanz et al. (Escudero-Arnanz et al., 2025) highlight the chal-
lenge of creating interpretable models for multidrug resistance using multivariate
time series. The complexity increases when integrating imaging data. Naik et
al. (Naik et al., 2025) demonstrate the use of Layer-Wise Relevance Propagation
(LRP) for classifying brain MRI images. Integrating these visual explanations
(heatmaps on an MRI) with tabular explanations (SHAP plots for lab values)
into a cohesive clinical dashboard remains a significant engineering challenge.

2.4.5.2 Sensor Technology and Data Granularity

The quality of XAI is inextricably linked to the quality of input data. Bieniek-
Kaczorek et al. (Bieniek-Kaczorek et al., 2025) discuss next-generation photonic
interrogators for vital signs monitoring. As sensor technology evolves to capture
higher-frequency data with greater precision, XAI methods must scale to handle
this increased resolution. Current XAI methods often aggregate data into hourly
bins, potentially smoothing out critical physiological volatility. Future XAI
frameworks will need to explain phenomena occurring at the sub-minute or
even second-by-second level, requiring more efficient computational approaches
than the computationally expensive SHAP calculations currently in use.

Table 2: Implementation Challenges and Proposed Solutions in ICU XAI.

Challenge
Domain Specific Issue Impact on XAI

Proposed
Solution
(Literature)

Data
Complexity

High
dimensionality,
Time-series

Explanations
become cluttered

Attention maps
(Liu et al., 2024),
Triple Attention
(Ghaith, 2024)

Multimodality Mixing text,
image, tabular
data

Disjointed
explanations

Unified
dashboards, LRP
integration (Naik
et al.,
2025)(Escudero-
Arnanz et al.,
2025)
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Challenge
Domain Specific Issue Impact on XAI

Proposed
Solution
(Literature)

Cognitive
Load

Information
overload

Clinician ignores
AI

Adaptive/Personalized
XAI
(Mohammed,
2025)

Computation Real-time
requirement

Latency in
explanation

Efficient
approximations,
Hybrid models
(Adebayo, 2025)

Privacy GDPR/Right to
Explanation

Regulatory
barriers

Machine
Unlearning
verification
(Vidal et al.,
2024)

Source: Synthesized from technical limitations discussed in Section 2.3.

2.4.6 Limitations of the Current Evidence Base
While the reviewed literature demonstrates significant progress, several limita-
tions persist, mirroring the research gaps identified in section 2.1.

2.4.6.1 Retrospective Validation Bias

The vast majority of studies reviewed, including (Long & Tong, 2025), (Adebayo,
2025), and (Wei et al., 2025), rely on retrospective datasets (e.g., MIMIC-III/IV,
eICU). While these datasets are invaluable for model development, they do
not capture the real-time interaction between a clinician and an XAI system.
Retrospective analysis cannot assess whether an explanation actually changes
clinical behavior or improves patient outcomes. It assumes that providing the
“correct” explanation leads to the “correct” action, a hypothesis that remains
largely untested in live clinical environments.

2.4.6.2 Lack of Prospective Clinical Trials

There is a notable scarcity of prospective, randomized controlled trials (RCTs)
evaluating XAI in the ICU. Bashir et al. (Bashir et al., 2025) provide a rare ex-
ample of clinical validation of XAI (in fetal growth scans), utilizing a multi-level,
cross-institutional evaluation with end-users. This type of rigorous validation is
largely absent in the adult ICU XAI literature. Without prospective evidence,
it is difficult to determine if XAI systems introduce new biases, such as automa-
tion bias (over-trusting the AI) or algorithm aversion (under-trusting the AI
due to a single failure).
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2.4.6.3 The “Treatment Paradox”

A recurrent issue in training ML models on ICU data is the treatment paradox:
effective treatment masks the severity of the condition. For example, a patient
with severe hypotension treated aggressively with vasopressors may have a “nor-
mal” blood pressure in the dataset. If an XAI model explains that “normal
blood pressure” reduces mortality risk without accounting for the massive dose
of norepinephrine maintaining that pressure, the explanation is clinically dan-
gerous. While causal methods (Cheng et al., 2025) attempt to address this, it
remains a pervasive issue in the underlying data that XAI must navigate.

2.4.7 Future Research Directions
Based on the synthesis of findings, several trajectories for future research emerge.

2.4.7.1 Real-Time, Closed-Loop Systems

The integration of real-time supply chain optimization techniques discussed by
Reddy Desani (Reddy Desani, 2023) offers a conceptual parallel for ICU logis-
tics and resource management. Future research should explore “Digital Twin”
models for the ICU, where XAI provides real-time transparency into patient
flow, bed availability, and staffing needs, alongside clinical predictions. Singh
(Singh, 2025) proposes an integrated framework for AI-enabled ICUs that in-
cludes automated clinical handoffs and intelligent wound monitoring. XAI will
be important in these integrated systems to ensure that automated handoffs
highlight the reasoning behind care plans, not just the data.

2.4.7.2 Regulatory Compliance and Unlearning

As regulations like the GDPR and the EU AI Act enforce the “right to ex-
planation,” the ability to verify that models are compliant becomes critical.
Vidal et al. (Vidal et al., 2024) investigate the use of XAI to verify “Machine
Unlearning”–the ability to remove a patient’s data from a trained model to
comply with privacy requests. This intersection of privacy, regulation, and ex-
plainability is a nascent but vital area for future inquiry.

2.4.7.3 Advancing Transformer Architectures

The development of advanced neural architectures, such as the Triple Attention
Transformer proposed by Ghaith (Ghaith, 2024), suggests that future models
will possess enhanced capabilities for maintaining long-term contextual coher-
ence. In the ICU, where a patient’s trajectory may span weeks, the ability of
a model to “remember” and “attend” to an event from admission day while
making a decision on day 14 is critical. XAI methods must evolve to visualize
these long-range dependencies effectively.

In conclusion, the discussion confirms that XAI in the ICU has progressed from
a theoretical desideratum to a technical reality. The findings from the liter-
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ature reviewed in section 2.3 demonstrate that while technical solutions for
interpretability (SHAP, Attention, Causal AI) are maturing, the challenge has
shifted toward integration, actionability, and human-factors optimization. The
gap between an “explainable model” and a “comprehensible decision aid” re-
mains the primary focal point for the next generation of research. Bridging this
gap requires a move away from purely retrospective performance metrics toward
prospective, user-centered evaluations that prioritize clinical utility and patient
safety.
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3. Conclusion
The integration of artificial intelligence (AI) into the high-stakes environment
of the Intensive Care Unit (ICU) represents a transformative frontier in modern
medicine. This scoping review has systematically mapped the environment of
Explainable AI (XAI) methods applied to critical care clinical decision support
systems, utilizing the Arksey & O’Malley framework to synthesize evidence
from 33 key sources. The review was driven by the imperative to reconcile
the superior predictive performance of “black-box” models–such as deep neural
networks–with the clinical, ethical, and legal requirements for transparency and
safety (Jia et al., 2021).

Our analysis reveals that while technical capabilities in XAI have advanced
rapidly, a significant gap remains between algorithmic explainability and clini-
cal interpretability. The literature demonstrates a heavy reliance on post-hoc,
model-agnostic methods like SHAP (Shapley Additive Explanations) for mortal-
ity and sepsis prediction (Long & Tong, 2025)(Adebayo, 2025), yet increasingly
points toward the necessity of causal and attention-based mechanisms to pro-
vide actionable insights (Cheng et al., 2025)(Liu et al., 2024). The following
sections synthesize the primary findings regarding methodological trends, clini-
cal effectiveness, and the critical challenges impeding widespread adoption.

3.1 Synthesis of Methodological Approaches
The review identified a distinct dichotomy in the methodological approaches
applied to ICU data: post-hoc interpretation of complex models versus the
development of intrinsically interpretable architectures.

3.1.1 Dominance of Feature Attribution Methods

The majority of reviewed studies uses feature attribution methods to explain
complex predictions. SHAP and LIME remain the standard for quantifying
the contribution of physiological variables to outcomes such as 28-day mortality
(Long & Tong, 2025) and ICU admission triage. These methods are favored
for their ability to provide local explanations–clarifying why a specific patient
received a specific prediction–which is essential for individual case management.
For instance, in mortality prediction models using Electronic Health Record
(EHR) data, hybrid LSTM approaches integrated with SHAP have successfully
highlighted critical physiological features that drive risk assessments, bridging
the gap between accuracy and transparency (Adebayo, 2025).

However, the literature suggests that feature importance alone is insufficient
for the temporal complexities of ICU care. Critical care data is inherently lon-
gitudinal, involving time-series data from vital signs and ventilators. Recent
advancements have seen the application of attention mechanisms and Triple
Attention Transformers to maintain contextual coherence over long temporal
sequences (Ghaith, 2024). These model-specific approaches offer a distinct ad-
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vantage by visualizing where in the temporal data the model is focusing, such as
identifying specific segments of vital sign instability that precede a sepsis onset
(Liu et al., 2024).

3.1.2 Emergence of Causal and Counterfactual Frameworks

A significant finding of this review is the emerging shift from correlational ex-
planations to causal frameworks. In critical care, knowing that a variable is
important is less valuable than knowing how manipulating that variable will
affect the patient. Causal XAI is identified as a vital frontier for distinguishing
between genuine physiological drivers and confounding artifacts (Zhang, 2023).

Recent studies emphasize that traditional deep learning models may learn
spurious correlations that do not generalize across different hospital systems.
Causally-informed deep learning models are now being developed to predict
outcomes like acute kidney injury and circulatory failure with greater gen-
eralizability (Cheng et al., 2025). Furthermore, reinforcement learning (RL)
approaches for treatment recommendation–such as sepsis fluid resuscitation
or drug dosing–are increasingly incorporating explanatory components to
justify continuous action spaces, moving beyond static predictions to dynamic
treatment trajectories (Saulières et al., 2023)(Huang et al., 2022).

3.2 Clinical Implications and Human Factors
The ultimate measure of XAI’s utility in the ICU is its impact on clinical work-
flow and decision-making confidence. This review highlights that the technical
generation of an explanation does not guarantee its usefulness to a clinician.

3.2.1 Trust and Cognitive Load

Trust is identified as a mediating factor in the adoption of AI systems. Re-
search indicates that the relationship between healthcare professionals and AI
is heavily influenced by Perceived Usefulness (PU) and Perceived Ease of Use
(PEOU) (Isparan Shanthi et al., 2024). In the high-pressure environment of an
ICU, where clinicians face significant cognitive fatigue, complex explanations
can paradoxically increase cognitive load rather than reduce it. Analogous stud-
ies in high-reliability domains suggest that mental workload significantly alters
how operators interact with automated alerts (Eva et al., 2022). Therefore, XAI
interfaces must be designed to align with the clinician’s expertise level, offering
adaptive explanations that provide the right level of detail without overwhelm-
ing the user (Mohammed, 2025).

3.2.2 Actionability of Explanations

For XAI to improve patient outcomes, explanations must be actionable. The
review found successful applications where XAI facilitated specific clinical inter-
ventions. For example, in predicting hypotension and the need for catecholamine
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therapy, models that explain why a pressure drop is anticipated allow clinicians
to intervene proactively rather than reactively (Koebe et al., 2025). Similarly,
in mechanical ventilation, interpretable models for predicting intubation needs
or ventilator-associated pneumonia (VAP) mortality risk provide clinicians with
justifiable grounds for escalating or de-escalating care (Saykat et al., 2025)(Wei
et al., 2025).

Table 3.1 summarizes the key clinical domains identified in the review and the
associated XAI utility.

Clinical Domain Primary XAI Application Key Benefit Citation
Mortality
Prediction

SHAP/LSTM for risk
scoring

Identifies
high-risk
physiology

(Long &
Tong,
2025)(Ade-
bayo,
2025)

Sepsis
Management

RL with continuous action
space

Optimizes
fluid/drug
dosing

(Huang et
al., 2022)

Hemodynamics Causal Deep Learning Predicts
circulatory
failure

(Cheng et
al., 2025)

Ventilation ML risk assessment Assessing
VAP
mortality risk

(Wei et al.,
2025)

Workflow Adaptive Interfaces Reduces
cognitive load

(Mohammed,
2025)

Table 3.1: Overview of XAI applications in critical care domains. This ta-
ble highlights the shift from purely predictive tasks to actionable management
support.

The integration of these systems into real-time workflows remains a challenge.
While models for fluid therapy (Dessap et al., 2025) and intubation (Saykat
et al., 2025) show promise in silico, the literature lacks extensive prospective
clinical trials validating that the presence of an explanation leads to better
patient outcomes compared to “black box” predictions alone.

3.3 Limitations of the Review
While this scoping review followed rigorous methodology, several limitations
must be acknowledged. First, the heterogeneity of the included studies–ranging
from theoretical framework proposals to retrospective validation on MIMIC-III
datasets–precludes a quantitative meta-analysis of XAI effectiveness. Second,
there is a notable scarcity of prospective, randomized controlled trials (RCTs)
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specifically evaluating the interface of XAI in the ICU. Most “validation” cur-
rently refers to algorithmic performance (AUC-ROC), not clinical utility or user
comprehension.

Furthermore, the review identified a potential bias in the literature toward pos-
itive results. Few studies reported on instances where XAI explanations were
misleading or caused over-reliance, despite the known risks of automation bias.
Finally, the rapid evolution of Large Language Models (LLMs) and their po-
tential role in generating natural language explanations is a nascent field that
appeared only in the most recent literature, suggesting this review captures a
environment that is currently in flux.

3.4 Challenges and Barriers to Implementation
The transition of XAI from research code to bedside tool is hindered by several
structural barriers.

3.4.1 Safety and Accountability

In safety-critical systems, the “correctness” of an explanation is difficult to verify.
Unlike a prediction which can be validated against ground truth (e.g., did the
patient survive?), an explanation (e.g., “the patient is deteriorating because of
elevated lactate”) is harder to validate objectively. This raises significant safety
assurance concerns, as incorrect explanations could lead clinicians to accept
erroneous model outputs (Jia et al., 2021). Issues of accountability also arise; if
a model provides a plausible but wrong explanation that leads to patient harm,
determining liability remains an unresolved legal question (Mirchandani, 2025).

3.4.2 Data Complexity and Multimodality

ICU patients generate terabytes of multimodal data, including waveforms, imag-
ing, and unstructured notes. While some progress has been made in interpreting
time-series data (Reddy Desani, 2023)(Escudero-Arnanz et al., 2025), integrat-
ing explanations across modalities (e.g., combining attention maps from vital
signs with relevance propagation from MRI images (Naik et al., 2025)) remains
technically demanding. The complexity of these multimodal interactions often
defies simple visualization, limiting the effectiveness of standard dashboards
(Singh, 2025).

3.5 Recommendations for Future Research
Based on the identified gaps, this review proposes a strategic research agenda
for the next phase of XAI in critical care.
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3.5.1 Prioritizing Causal and Counterfactual XAI

Future research should prioritize causal inference models over purely correla-
tional ones. Clinicians need to ask “what if?” questions (e.g., “What if I increase
the vasopressor dose?”). Causal XAI frameworks (Zhang, 2023) and causally-
informed deep learning (Cheng et al., 2025) offer the theoretical basis for these
simulations and should be the focus of future algorithmic development.

3.5.2 Clinical Validation and User-Centric Design

There is an urgent need for prospective studies that evaluate XAI tools in real-
time clinical settings. These studies should measure not just model accuracy, but
“human-in-the-loop” performance metrics, such as time-to-decision, diagnostic
accuracy with vs. Without explanations, and clinician trust levels over time
(Isparan Shanthi et al., 2024). Methodologies for clinical validation seen in
other domains, such as multi-level cross-institutional evaluations of fetal scans
(Bashir et al., 2025), should be adapted for the ICU context to ensure robustness
across different hospital systems.

3.5.3 Adaptive and Personalized Interfaces

One size does not fit all in XAI. Systems should be designed with adaptive
capabilities that tailor the complexity and format of explanations to the user’s
role (nurse vs. Intensivist) and expertise level (Mohammed, 2025). This requires
interdisciplinary collaboration between ML engineers, cognitive scientists, and
intensivists to design interfaces that respect the cognitive constraints of the ICU
environment.

Table 3.2 outlines specific recommendations for key stakeholders in the develop-
ment of ICU XAI systems.

Stakeholder Recommendation Rationale Citation
Researchers Focus on Causal XAI Distinguish

causation from
correlation

(Cheng et al.,
2025)(Zhang,
2023)

Developers Implement Adaptive
UI

Tailor to user
expertise/role

(Mohammed,
2025)

Clinicians Demand Clinical
Validation

Ensure safety
beyond AUC
metrics

(Jia et al.,
2021)(Bashir
et al., 2025)

Regulators Standardize Audits Verify
explanation
fidelity/safety

(Jia et al.,
2021)(Vidal
et al., 2024)
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Stakeholder Recommendation Rationale Citation
Hospitals Integrate Multimodal

Data
Comprehensive
patient view

(Singh,
2025)(Escudero-
Arnanz et al.,
2025)

Table 3.2: Strategic recommendations for advancing XAI in intensive care set-
tings.

3.6 Concluding Remarks
This scoping review confirms that while Explainable AI has immense potential
to unlock the value of machine learning in intensive care, it is not yet a mature
clinical technology. The field has successfully moved beyond the initial “black
box” phase, developing strong techniques like SHAP and attention mechanisms
to visualize model focus. However, the translation of these technical explana-
tions into clinically meaningful, actionable, and safe decision support requires a
fundamental shift in research focus.

The future of ICU XAI lies not in generating more complex heatmaps, but in
developing causal models that align with physiological reasoning and adaptive
interfaces that support the cognitive workflow of the intensivist. By addressing
the challenges of safety assurance, causal validity, and human-computer interac-
tion, XAI can evolve from a retrospective analysis tool into a proactive partner
in saving lives. The path forward requires rigorous, prospective validation to
ensure that these powerful algorithms serve their primary purpose: enhancing
the human capacity to care for the critically ill.
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4. Appendices
Appendix A: Taxonomy of Explainable AI Methods in Crit-
ical Care
This appendix presents a structured taxonomy of Explainable Artificial Intelli-
gence (XAI) methods identified through the scoping review of machine learning
applications in the Intensive Care Unit (ICU). The classification framework dis-
tinguishes between intrinsic interpretability and post-hoc explainability, further
categorizing methods based on their scope (local vs. Global) and model speci-
ficity. This taxonomy provides the conceptual scaffolding used to analyze the
technical literature reviewed in the main body of the thesis.

A.1 Classification Framework

The application of XAI in critical care is broadly divided into two primary
paradigms: ante-hoc (intrinsic) models and post-hoc (extrinsic) explanation
techniques. Intrinsic models are designed to be transparent by nature, such as
decision trees or linear regression, where the relationship between input variables
and outcomes is directly observable. However, the complexity of physiological
data in the ICU often necessitates the use of complex “black box” models like
Deep Neural Networks (DNN) and Long Short-Term Memory (LSTM) networks
to achieve high predictive accuracy (Adebayo, 2025)(Bon & Cardot, 2011). Con-
sequently, the majority of recent literature focuses on post-hoc methods applied
to these complex architectures.

Category Definition Common Examples in ICU Key Strengths
Intrinsic Models

inherently
transparent

Decision Trees, Regression Easy to audit

Post-hoc Explanations
applied after
training

SHAP, LIME High model
accuracy

Model-
Agnostic

Applied to
any
algorithm

Permutation Importance Versatile
comparison

Model-
Specific

Tied to
specific
architecture

Attention Mechanisms Architecture
insight

Table A1: High-level classification of XAI approaches found in critical care
literature (Somani et al., 2023)(Jia et al., 2021).

Intrinsic interpretability remains valuable for specific clinical tasks where linear
relationships dominate or where regulatory requirements demand absolute trans-
parency. However, as demonstrated by recent studies in mortality prediction

55



and sepsis detection, the non-linear dynamics of patient deterioration often fa-
vor deep learning approaches, thereby necessitating post-hoc solutions to bridge
the gap between accuracy and interpretability (Long & Tong, 2025)(Liu et al.,
2024).

A.2 Feature Attribution Methods

Feature attribution methods represent the most prevalent class of XAI deployed
in ICU settings. These techniques assign a relevance score to each input feature
(e.g., heart rate, lactate, age) to quantify its contribution to a specific prediction.
The scoping review identified Shapley Additive Explanations (SHAP) as the
dominant method in this category, largely due to its solid theoretical foundation
in game theory and its ability to provide both local (patient-level) and global
(population-level) explanations (Long & Tong, 2025).

SHAP values allow clinicians to visualize how specific physiological deviations
push a patient’s risk score higher or lower from the baseline. For instance,
in models predicting 28-day mortality, SHAP analyses have successfully high-
lighted the temporal importance of features like Glasgow Coma Scale (GCS)
and blood urea nitrogen, offering granular insights that aggregate metrics can-
not provide (Long & Tong, 2025). Similarly, Local Interpretable Model-agnostic
Explanations (LIME) creates sparse linear approximations around a single pre-
diction to explain individual decisions, though issues with stability have been
noted in high-dimensional ICU data.

A.3 Attention Mechanisms and Temporal Interpretability

In the context of time-series data–which is ubiquitous in the ICU via contin-
uous vital sign monitoring–attention mechanisms have emerged as a critical
“model-specific” XAI method. Unlike static feature attribution, attention mech-
anisms allow Recurrent Neural Networks (RNNs) and Transformers to dynami-
cally weigh input data across time steps. This capability is particularly relevant
for identifying the specific time windows in a patient’s history that triggered an
alarm.

Mechanism Application Context Interpretability Output Reference
Temporal
Atten-
tion

Sepsis Prediction Highlights critical time
steps

(Liu et al.,
2024)

Triple
Atten-
tion

Contextual
Coherence

Long-term dependency
tracking

(Ghaith,
2024)

Layer-
Wise
Prop

Image/Signal
Classification

Heatmaps of signal
relevance

(Naik et
al., 2025)
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Table A2: Attention-based and neural-network-specific interpretability mecha-
nisms.

Recent advancements have introduced “Triple Attention Transformers” to en-
hance contextual coherence, which is vital when integrating multimodal data
sources such as clinical notes and waveform data (Ghaith, 2024). Furthermore,
model-agnostic attention maps have been developed to forecast vital signs, al-
lowing clinicians to see which historical trends (e.g., a drop in blood pressure
two hours prior) heavily influenced a sepsis prediction (Liu et al., 2024). This
temporal dimension of explainability is essential for actionable clinical decision
support, as it aligns the AI’s “focus” with the clinician’s temporal reasoning.

A.4 Counterfactual and Causal Explanations

A growing subset of the literature moves beyond correlation-based feature im-
portance toward causal explainability. Causal XAI attempts to answer “what-if”
questions: What would have happened to the mortality risk if the patient’s lac-
tate had been lower? This approach is important for treatment recommendation
systems, such as those suggesting fluid resuscitation or vasopressor initiation
(Cheng et al., 2025)(Zhang, 2023).

Causally-informed deep learning models aim to separate genuine causal drivers
of patient outcomes from spurious correlations found in training data. For exam-
ple, a model might learn that lower aggressive treatment correlates with better
outcomes (because healthier patients receive less treatment), leading to dan-
gerous recommendations. Causal XAI methods correct for these confounders,
ensuring that explanations reflect valid physiological mechanisms rather than
statistical artifacts (Cheng et al., 2025). This represents the frontier of ICU
XAI, moving from “why did the model predict this?” to “what should we do
about it?”

Appendix B: Supplementary Data Tables
This appendix provides detailed data extraction tables summarizing the key
studies included in the scoping review. The studies are grouped by clinical
application domain: Mortality Prediction, Sepsis & Deterioration, and Thera-
peutic Intervention. These tables supplement the synthesis provided in the main
text by offering granular details on the specific machine learning architectures
and XAI techniques employed in each study.

B.1 Mortality and Risk Prediction Studies

Mortality prediction remains one of the most common applications for ML in
the ICU. The following table summarizes studies that utilized XAI to explain
risk scores for general ICU populations or specific conditions like Ventilator-
Associated Pneumonia (VAP).
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Study Target Outcome ML Model XAI Method Key Findings
Long
&
Tong
(2025)
(Long
& Tong,
2025)

28-Day Mortality XGBoost,
RF, LR

SHAP
(Global/Local)

GCS, Age,
BUN identified
as top
predictors.

Adebayo
(2025)
(Ade-
bayo,
2025)

ICU Mortality Hybrid
LSTM

SHAP Hybrid models
balance
accuracy &
interpretability.

Wei et
al. (2025)
(Wei et
al.,
2025)

VAP Mortality LightGBM SHAP Platelet count
& creatinine
key for VAP
risk.

Cheng
et
al. (2025)
(Cheng
et al.,
2025)

General
Outcomes

Causal DL Causal
Graphs

Causality
improves
generalization
across sites.

Table B1: Summary of XAI applications in mortality and general outcome pre-
diction.

The data indicates a strong convergence toward tree-based ensemble methods
(XGBoost, LightGBM) paired with SHAP for static risk prediction tasks. In
these studies, SHAP was consistently used to validate the model against clini-
cal knowledge–for example, confirming that lower Glasgow Coma Scale scores
correlate with higher mortality risk (Long & Tong, 2025). The emergence of hy-
brid LSTM models suggests a trend toward capturing temporal dynamics while
retaining the interpretability features typically associated with simpler models
(Adebayo, 2025).

B.2 Sepsis and Acute Clinical Deterioration

Sepsis prediction requires analyzing high-frequency temporal data. The stud-
ies below demonstrate how XAI is used to explain dynamic alerts in real-time
monitoring systems.
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Study Clinical Task Data Type
XAI
Approach Validation Metric

Liu et
al. (2024)
(Liu et
al.,
2024)

Sepsis
Prediction

Vital Signs
(Time
Series)

Attention
Maps

MSE, MAE

Escudero-
Arnanz
(2025)
(Escudero-
Arnanz
et al.,
2025)

Multidrug
Resistance

Multivariate
Time
Series

Feature
Importance

AUROC

Koebe
et
al. (2025)
(Koebe
et al.,
2025)

Hypotension Hemodynamic
Vitals

Threshold
Analysis

AUROC, AUPRC

Table B2: XAI methods applied to dynamic deterioration and sepsis prediction.

In sepsis and hypotension prediction, the focus shifts from global feature impor-
tance to temporal localization. Attention maps allow clinicians to visualize the
specific trajectory of vital signs that triggered an alert (Liu et al., 2024). This
is particularly relevant for “early warning” systems, where the goal is to inter-
vene before irreversible deterioration occurs. The use of multivariate time series
analysis facilitates the detection of complex patterns, such as the interaction
between heart rate variability and blood pressure drops, which are often subtle
in early sepsis stages (Escudero-Arnanz et al., 2025).

B.3 Therapeutic Interventions and Resource Management

Beyond prediction, ML models are increasingly used to recommend interven-
tions. Explainability in this domain is critical for safety, as incorrect treatment
recommendations (e.g., drug dosing, intubation) carry immediate risks.

Study Intervention Model Type XAI/Validation Reference
Saykat
et
al. (2025)

Intubation
Need

ML
Classifiers

Feature Ranking (Saykat et
al., 2025)
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Study Intervention Model Type XAI/Validation Reference
Huang
et
al. (2022)

Sepsis
Treatment

Reinforcement
Learning

Continuous
Action Space

(Huang et
al., 2022)

Koebe
et
al. (2025)

Catecholamine
Therapy

Predictive
Modeling

Clinical
Thresholds

(Koebe et
al., 2025)

Park
et
al. (2024)

Dosing
Optimization

ML
Optimization

SHAP-based Opt. (Park et al.,
2024)

Table B3: XAI in therapeutic recommendation and resource management sys-
tems.

Studies involving Reinforcement Learning (RL) for sepsis treatment represent
the most complex frontier for XAI. Here, agents learn continuous action spaces
(e.g., dosage of vasopressors and fluids). Explaining policies–sequences of
decisions–is significantly harder than explaining single predictions. Approaches
include visualizing the value function or mapping the agent’s decision bound-
aries against established clinical guidelines (Huang et al., 2022). Additionally,
prediction models for intubation needs uses feature ranking to justify airway
management decisions to respiratory therapists and intensivists (Saykat et al.,
2025).

Appendix C: Glossary of Terms
This glossary defines key technical and clinical terms used throughout the scop-
ing review, synthesizing definitions from the cited literature to ensure consis-
tency.

Ante-hoc Interpretability: Also known as intrinsic interpretability. Refers
to machine learning models that are transparent by design, where the internal
structure (e.g., the nodes of a decision tree or coefficients of a regression) allows
users to understand how inputs map to outputs without secondary explanation
methods (Somani et al., 2023).

Attention Mechanism: A component of neural network architectures, par-
ticularly Transformers and RNNs, that allows the model to dynamically focus
on different parts of the input sequence (e.g., specific time points in a vital
sign stream) when generating a prediction. In XAI, attention weights are often
visualized to show what data the model prioritized (Liu et al., 2024)(Ghaith,
2024).

Black Box Model: A complex machine learning model, such as a Deep Neural
Network (DNN) or Gradient Boosting Machine (GBM), whose internal decision-
making process is too complex for humans to comprehend directly. These models
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typically require post-hoc XAI methods to generate explanations (Somani et al.,
2023)(Jia et al., 2021).

Causal Explainability: An approach to XAI that incorporates causal infer-
ence to distinguish between correlation and causation. This is critical in medi-
cal decision-making to prevent models from learning spurious correlations (e.g.,
treatment artifacts) and to support “what-if” reasoning regarding interventions
(Cheng et al., 2025)(Zhang, 2023).

Feature Attribution: A class of XAI methods that assigns a score to each
input feature indicating its contribution to the model’s output. Positive scores
indicate the feature pushes the prediction higher (e.g., toward mortality), while
negative scores indicate a protective effect (Long & Tong, 2025).

Layer-Wise Relevance Propagation (LRP): A technique for deep neural
networks that propagates the prediction backward through the network layers
to identify which input pixels (in imaging) or features were most relevant. It is
particularly useful for visualizing contributions in complex non-linear topologies
(Naik et al., 2025).

Post-hoc Explainability: Techniques applied after a model has been trained
to explain its predictions. These methods do not alter the internal structure of
the model but approximate its behavior to provide insights. Examples include
SHAP and LIME (Somani et al., 2023)(Long & Tong, 2025).

Reinforcement Learning (RL): A type of machine learning where an agent
learns to make sequences of decisions (e.g., adjusting drug dosages over time)
by maximizing a reward signal. Explaining RL policies involves understanding
the long-term strategy rather than just immediate predictions (Saulières et al.,
2023)(Huang et al., 2022).

SHAP (Shapley Additive Explanations): A game-theoretic approach to
feature attribution that calculates the average marginal contribution of a feature
value across all possible coalitions of features. It provides a unified measure
of feature importance that is consistent and locally accurate (Long & Tong,
2025)(Adebayo, 2025).

Appendix D: Implementation and Evaluation Framework
The successful deployment of XAI in the ICU requires more than algorithmic
correctness; it demands a rigorous evaluation of safety, trust, and usability. This
appendix outlines a framework for evaluating XAI tools based on the principles
of safety assurance and human-computer interaction identified in the review.

D.1 The Safety Assurance Case for XAI

In safety-critical domains like critical care, XAI serves as a mechanism for safety
assurance. As argued by Jia et al. (Jia et al., 2021), the opacity of ML models
makes it difficult to verify that the system will behave correctly in all scenarios.
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XAI helps mitigate this by allowing clinicians to audit the model’s reasoning for
“validity”–ensuring the model is using medically relevant features rather than
artifacts (e.g., detecting a scanner tag rather than pathology).

Assurance Goal XAI Role Evaluation Question
Trustworthiness Reveal logic Does the logic align with physiology?
Fairness Detect bias Is the model relying on protected attributes?
Robustness Failure analysis How does the model behave with noisy data?
Compliance Audit trail Can we explain the error post-incident?

Table D1: Safety assurance goals facilitated by explainable AI (Jia et al.,
2021)(Vidal et al., 2024).

To operationalize this, clinical XAI systems must support “Machine Unlearning”
verification–ensuring that if a model is retrained to remove biased or invalid
data, the XAI confirms the removal of those dependencies (Vidal et al., 2024).
This is particularly relevant for maintaining compliance with data protection
regulations and ensuring that models do not retain “memorized” private patient
data.

D.2 Human Factors and Cognitive Load

The effectiveness of an explanation is heavily dependent on the user’s expertise
and cognitive state. An explanation that is useful to a data scientist may be
unintelligible or distracting to a bedside nurse during a code blue. Research
indicates that “one-size-fits-all” explanations are insufficient. Instead, Adaptive
XAI systems are proposed, which personalize the complexity and format of
explanations based on the user’s role and expertise level (Mohammed, 2025).

Furthermore, the introduction of XAI must not exacerbate the cognitive load
of clinicians. High cognitive load can moderate the relationship between the
perceived usefulness of a system and the user’s trust in it (Isparan Shanthi
et al., 2024). If an explanation is too complex or requires significant mental
effort to interpret, it may decrease trust and adoption, even if the underlying
model is accurate. Therefore, evaluation frameworks must include metrics for
“Perceived Ease of Use” (PEOU) and cognitive workload alongside standard
accuracy metrics (Isparan Shanthi et al., 2024).

D.3 Clinical Validation Protocol Checklist

Based on the multi-level validation approaches seen in recent literature (e.g.,
fetal scan validation (Bashir et al., 2025) and ICU workflow integration (Singh,
2025)), the following checklist is recommended for future ICU XAI studies:

1. Technical Validation: Does the XAI method faithfully reflect the
model’s behavior? (Sanity checks, stability analysis).
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2. Clinician-in-the-Loop Evaluation: Do clinicians interpret the expla-
nation correctly? (User studies with varying expertise).

3. Actionability Assessment: Does the explanation lead to a change in
clinical management? (e.g., Does a sepsis alert with a “Lactate” highlight
prompt a lactate draw?) (Koebe et al., 2025).

4. Workflow Integration: Is the explanation presented at the right time
without disrupting care? (Singh, 2025).

5. Safety Audit: Has the XAI been used to identify and mitigate spurious
correlations or artifacts? (Jia et al., 2021).

Future research should prioritize these prospective, cross-institutional evalua-
tions to move XAI from theoretical papers to bedside practice.
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