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Abstract

Research Problem and Approach: The rapid proliferation of Large Language
Models (LLMSs) has revolutionized artificial intelligence but introduced significant computa-
tional barriers that hinder deployment on resource-constrained edge devices. This research
addresses the critical inefficiency of deploying modern Transformers on integer-only hardware
architectures, where a fundamental mismatch between advanced quantization algorithms
and hardware capabilities creates a substantial latency gap. The study adopts a hardware-
software co-design approach to reconcile the high dynamic range requirements of activation
outliers with the strict limitations of low-power, integer-based processing units found in
FPGAs and RISC-V microcontrollers.

Methodology and Findings: By analyzing the mathematical formulation of quan-
tization and the architectural constraints of edge computing, this investigation identifies the
root causes of performance degradation in post-training quantization (PTQ). The research
demonstrates that standard methods, such as GPTQ and AWQ), often fail to translate theo-
retical compression into wall-clock speedups on strict edge hardware due to their reliance on
floating-point fallback operations. The study evaluates optimized quantization strategies de-
signed for configurable systolic arrays, showing that efficient inference is achievable without
the expensive silicon footprint required for mixed-precision arithmetic.

Key Contributions: This thesis makes three primary contributions: (1) A system-
atic analysis of the hardware-algorithm mismatch in current quantization techniques when
applied to integer-only architectures, (2) An evaluation of strategies to mitigate the impact
of activation outliers without reverting to floating-point operations, and (3) A framework for
optimizing quantization specifically for hardware accelerators like systolic arrays to maximize
resource utilization and throughput.

Implications: The findings have profound implications for the democratization of

Al enabling privacy-preserving, local inference for sensitive applications in healthcare and



security. By bridging the gap between massive model complexity and edge hardware con-
straints, this research offers a pathway toward sustainable Al development that significantly
reduces the carbon footprint of inference while extending the operational lifespan of battery-
powered autonomous systems.

Keywords: Large Language Models, Edge Al, Quantization, Hardware-Software
Co-Design, Integer-Only Inference, Post-Training Quantization, Activation Outliers, FPGA,
RISC-V, Energy Efficiency, Systolic Arrays, Model Compression, Latency Optimization,

Sustainable AI, Deep Learning



1. Introduction

1.1 Background and Context

The rapid proliferation of Large Language Models (LLMs) has fundamentally trans-
formed the environment of artificial intelligence, enabling unprecedented capabilities in nat-
ural language understanding, generation, and reasoning. Models based on the Transformer
architecture have become the de facto standard for a wide range of tasks, from automated
code generation to complex medical diagnostics. However, this performance comes at a sub-
stantial computational cost. As detailed by Dettmers et al. (Dettmers et al., 2022), these
models require significant GPU memory for inference, often necessitating server-grade hard-
ware that is inaccessible for ubiquitous deployment. The massive size of these highly accurate
models results in extremely high computational and storage costs, creating a barrier to entry
for many applications (Frantar et al., 2022).

Concurrently, there is a major change toward “Edge Al,” where data processing oc-
curs locally on devices rather than in centralized cloud data centers. This shift is driven by
the need for lower latency, enhanced privacy, and reduced bandwidth dependency. Anchi-
taalagammai et al. (Dr.J.V.Anchitaalagammai et al., 2025) highlight that while Al models
traditionally “live in the cloud,” deploying models directly on edge devices makes them
smarter and more responsive. However, the resource constraints of edge hardware-ranging
from embedded FPGAs to mobile CPUs—present a stark contrast to the massive floating-
point compute capabilities of the data centers where LLMs are trained.

The intersection of these two trends—massive models and constrained edge hardware—
has necessitated the development of model compression techniques. Among these, quantiza-
tion has emerged as a critical strategy. Quantization reduces the precision of the model’s
parameters (weights) and transient data (activations) from high-precision floating-point for-

mats (e.g., FP32 or FP16) to lower-precision representations, typically integers (e.g., INT8 or



INT4). This reduction aims to minimize memory footprint and accelerate inference without
significantly compromising model accuracy (Madhanegha et al., 2025).

Despite the theoretical benefits, a significant “latency gap” remains. While quan-
tization algorithms often report theoretical compression rates, realizing actual wall-clock
speedups on integer-only hardware involves complex interactions between the software algo-
rithm and the underlying hardware architecture. For instance, recent work on optimizing
generative Al workloads emphasizes that sustainability and efficiency require a comprehen-
sive view of hardware optimization (Dua & Patel, 2024). Furthermore, specific challenges
such as activation outliers in Transformers complicate the direct application of standard
integer quantization, often requiring mixed-precision arithmetic that defeats the purpose of

integer-only hardware acceleration (Czaké et al., 2025).

1.2 Problem Statement

The primary challenge addressed in this thesis is the inefficiency of deploying modern
LLMs on integer-only hardware architectures due to the mismatch between advanced quan-
tization algorithms and hardware constraints. While techniques like Post-Training Quan-
tization (PTQ) have shown promise, they often rely on hardware capabilities that are not

present in strict edge environments.

1.2.1 The Activation Outlier Challenge

A critical hurdle in LLM quantization is the presence of extreme outliers in activation
maps. Czako et al. (Czaké et al., 2025) provide a systematic review of this phenomenon,
noting that these outliers necessitate high dynamic ranges that standard integer formats
cannot easily accommodate. To preserve accuracy, methods like LLM.int8() uses mixed-
precision decomposition, processing outliers in FP16 and the rest in INT8 (Dettmers et al.,

2022). While this preserves perplexity, it imposes a hardware requirement for floating-point



units (FPUs), which are expensive in terms of silicon area and energy consumption on edge

devices.

1.2.2 The Hardware-Algorithm Mismatch

Many current quantization methods, such as GPTQ (Frantar et al., 2022) and AWQ
(Lin et al., 2023), primarily focus on weight quantization while leaving activations in higher
precision or assuming specific kernel support (e.g., CUDA cores). However, purely integer-
based hardware, such as certain FPGA implementations or low-power RISC-V microcon-
trollers, lacks efficient support for these mixed-precision operations. Chang (Chang, 2025)
discusses the necessity of hardware-software co-design for efficient inference on PCle-based
FPGAs, highlighting that standard software-only optimizations often fail to translate to
hardware efficiency without custom data path considerations.

The mathematical formulation of the quantization problem highlights this disconnect.
Standard uniform quantization maps a floating-point value x to an integer ¢ via a scale factor

S and zero-point Z:

q = round (% + Z)

T =S(q—2)

approx

In integer-only hardware, the dequantization step (z and subsequent accumu-

approz)
lation must be handled without reverting to floating-point arithmetic. If the scale factor S
is not a power of two, or if the accumulation requires dynamic rescaling due to activation
outliers, the hardware complexity increases drastically. This results in the aforementioned
latency gap, where the computational cost of managing quantization metadata (scales, zero-

points) and handling mixed-precision fallback operations negates the theoretical speedup of

using lower-precision math.



1.3 Motivation and Significance

The motivation for this research stems from the urgent need to democratize access to
Large Language Models. Current reliance on cloud-based inference raises significant privacy
concerns, particularly in sensitive sectors such as healthcare and security. For example, Kapo
et al. (Kapo et al., 2024) discuss the use of deep learning for brain tumor segmentation, a
domain where patient data privacy is essential. Enabling such models to run locally on
integer-only hardware would ensure that sensitive medical data never leaves the device.

Furthermore, the energy efficiency of integer operations compared to floating-point
operations is a decisive factor for battery-powered devices. The energy cost of a 32-bit
floating-point addition is orders of magnitude higher than that of an 8-bit integer addition.
By enabling true integer-only inference, we can extend the operational lifespan of edge devices
deploying complex Al tasks. This is particularly relevant for applications like real-time fire
detection in surveillance environments, where continuous monitoring is required and power

efficiency is critical (Dilshad et al., 2023).

1.3.1 Economic and Environmental Impact

The computational demands of Generative Al have reached a tipping point where
energy consumption is a major environmental concern (Dua & Patel, 2024). Specialized
hardware accelerators, such as systolic arrays on GPGPUs or FPGAs, offer a path to sus-
tainability. Wang et al. (Wang et al., 2025) propose configurable systolic array architectures
to address resource utilization challenges. By optimizing quantization strategies specifically
for these architectures, this thesis contributes to reducing the carbon footprint of Al infer-

ence.



1.8.2 Bridging the Gap in Hybrid Architectures

Recent advancements in hybrid models, such as those combining Convolutional Neural
Networks (CNNs) and Vision Transformers (ViTs), present new quantization challenges. Kim
et al. (Kim et al., 2024) introduce HyQ, a hardware-friendly quantization approach for these
hybrid networks. This thesis builds upon such foundational work, extending the principles of
hardware-friendly design to the specific domain of decoder-only LLMs, which are notoriously

difficult to quantize due to their size and sensitivity to parameter precision.

1.4 Research Objectives

This thesis aims to develop and evaluate “Hardware-Native” quantization strategies
that enable the efficient execution of Large Language Models on architectures lacking native
floating-point support.

The specific objectives are as follows:

1. Analyze the impact of activation-aware quantization on integer datapaths:
To determine how techniques like AWQ (Lin et al., 2023) can be adapted for fixed-point
arithmetic without requiring runtime floating-point rescaling.

2. Develop an integer-only approximation for non-linear operations: To propose
efficient hardware implementations for LayerNorm and Softmax operations, which are
typically bottlenecks in integer-only Transformers.

3. Evaluate performance on constrained hardware: To benchmark the proposed
strategies against existing methods (e.g., GPTQ, LLM.int8()) using metrics of latency,
power consumption, and model perplexity on FPGA and RISC-V platforms.

4. Investigate the trade-offs in low-precision regimes: To explore the viability of
sub-8-bit quantization (e.g., 4-bit weights, 8-bit activations) for specific edge applica-

tions.



1.5 Theoretical Framework

The research is grounded in the theory of digital signal processing and computer
architecture. The fundamental premise is that neural network inference can be modeled as
a series of matrix multiplications (GEMM) and element-wise operations.

The computational intensity of the linear layers in a Transformer is defined by the

matrix multiplication:

Y=W.-X

Where W is the weight matrix and X is the input activation matrix. In a quantized

regime, we seek to approximate this as:

Y ~ SwSx(Wznt ' Xint)

Here, W,,,, and X, are integer matrices, and S, S, are scalar scaling factors. The
efficiency of the hardware implementation depends heavily on how S, S, is handled. If these
scalars are floating-point numbers, the final multiplication requires an FPU. This thesis
explores dyadic quantization schemes where scalars are approximated as 2%, allowing the
multiplication to be replaced by bit-shift operations, which are virtually free in hardware

terms.

1.5.1 Review of Quantization Paradigms

To contextualize the proposed approach, it is necessary to categorize existing quan-
tization methods based on their hardware implications. Table 1 provides a comparative

overview of the dominant paradigms in current literature.



Paradigm

Key Characteristic

Hardware

Requirement

Representative

Works

Post-Training
Quantization
(PTQ)
Activation-Aware

Quantization

Hessian-Based

Quantization

Hardware-Native

Quantization

Quantizes
weights/activations
without retraining
Protects salient
weights based on

activation magnitude

Uses second-order
information to
minimize error
Aligns quantization
logic with hardware

datapaths

Moderate; often
needs calibration
data

Mixed (INT/FP) for

scaling factors

High compute during

quantization phase

Integer-only
(DSP/ALU)

GPTQ (Frantar et
al., 2022), HyQ (Kim
et al., 2024)

AWQ (Lin et al.,
2023), LLM.int8()
(Dettmers et al.,
2022)

Q-BERT (Shen et al.,

2020)

Co-design of
TinyLLM (Muller et

al., 2024)

Table 1: Comparison of Quantization Paradigms and Hardware Implications. Adapted

from concepts in (Czakd et al., 2025), (Frantar et al., 2022), and (Muller et al., 2024).

As illustrated in Table 1, while PTQ and Activation-Aware methods offer excellent ac-
curacy retention, they often imply hardware requirements that are not strictly “integer-only.”
For instance, LLM.int8() explicitly relies on a mixed-precision decomposition (Dettmers et
al., 2022), which is computationally expensive on devices like the FPGA implementations
discussed by Muller et al. (Muller et al., 2024). The “Hardware-Native” approach, exem-
plified by co-design strategies, attempts to align the mathematical operations of the neural

network with the physical logic gates available on the device, such as Look-Up Tables (LUTs)

and Digital Signal Processing (DSP) slices on FPGAs.



1.6 Scope and Limitations

This thesis focuses specifically on inference-time quantization. Training-time quanti-
zation (Quantization-Aware Training or QAT) is outside the primary scope, although QAT
principles are referenced where relevant. The target model architectures are Transformer-
based LLMs (e.g., Llama, OPT, BERT variants), as these represent the current current.

The hardware scope is limited to “integer-only” architectures. In this context, this
refers to processors or accelerators where floating-point arithmetic is either unavailable (e.g.,
low-end microcontrollers), emulated via slow software libraries, or prohibitively expensive in
terms of power/area (e.g., small FPGAs). This includes architectures like the RISC-V imple-
mentations analyzed by Martinez et al. (Martinez et al., 2025) and the FPGA accelerators
discussed by Sadr et al. (Sadr et al., 2025).

A key limitation acknowledged in this work is the “accuracy-efficiency trade-oftf.” Ag-
gressive quantization to integer formats inevitably introduces noise. While methods like
Hessian-based quantization (Q-BERT) can mitigate this (Shen et al., 2020), there is a theo-
retical lower bound on precision below which model collapse occurs, particularly for genera-

tive tasks.

1.7 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2: Literature Review provides a comprehensive survey of the current in
model compression. It examines the evolution from CNN quantization (Kim et al., 2024)
to Transformer-specific techniques (Shen et al., 2020). It also reviews hardware acceleration
strategies, including FPGA-based implementations (Muller et al., 2024)(Sadr et al., 2025)
and systolic array designs (Wang et al., 2025).

Chapter 3: Methodology details the proposed hardware-native quantization

framework. It describes the mathematical formulation of the integer-only approximation for

10



non-linear functions and the strategy for handling activation outliers without floating-point
fallback.

Chapter 4: Hardware Architecture describes the target experimental platforms.
This includes the specification of the FPGA environments and the simulation models used
for RISC-V and ARM comparisons, drawing on methodologies for evaluating latency-critical
inference (Martinez et al., 2025).

Chapter 5: Implementation discusses the software stack and compiler optimiza-
tions required to map the quantized models to the hardware. This includes a discussion on
memory management and bandwidth optimization, which are critical for edge devices (Zhu
et al., 2025).

Chapter 6: Analysis and Results presents the empirical findings. We report on
the accuracy (perplexity) vs. Efficiency (latency/power) trade-offs, comparing the proposed
method against baselines like GPTQ (Frantar et al., 2022) and standard FP16 inference.

Chapter 7: Discussion interprets the results in the context of the broader field, an-
alyzing the implications for real-time applications such as autonomous systems and privacy-
preserving computing.

Chapter 8: Conclusion summarizes the contributions and outlines future research

directions, particularly regarding the scalability of these techniques to multi-modal models.

1.8 Detailed Rationale for Research

To further substantiate the necessity of this research, we must examines deeper into
the mechanics of current inefficiencies. The “memory wall” is a well-documented bottleneck
in computer architecture, but for LLMs, it is compounded by the “compute wall” when

running on edge devices.

11



1.8.1 The Memory-Compute Interplay

In Transformer models, the attention mechanism scales quadratically with se-
quence length, while feed-forward networks scale linearly with model width. Dettmers et
al. (Dettmers et al., 2022) demonstrated that matrix multiplication in these layers accounts
for the vast majority of inference time. When these operations are performed in FP16 or
BF16, the data movement alone consumes significant energy. Integer quantization reduces
this data volume by 2x (INTS8) or 4x (INT4).

However, mere data reduction is insufficient if the compute units cannot consume
the data efficiently. Auten et al. (Auten et al., 2020) highlight in the context of Graph
Neural Networks that hardware acceleration must be tailored to the specific dataflow of the
algorithm. Similarly, for LLMs, if the hardware must constantly cast INT8 data to FP32 for
accumulation (to avoid overflow) and then back to INTS, the latency penalty of these casting
operations can exceed the memory bandwidth savings. This thesis proposes a datapath that

remains in the integer domain for the maximum possible duration of the inference cycle.

1.8.2 Recent Advances and Remaining Gaps

Recent literature has begun to address parts of this problem. For instance, Lin et
al. (Lin et al., 2023) introduced AWQ, which recognizes that not all weights are equally
important. By scaling the weights based on activation magnitude, they achieve significant
performance gains. However, AWQ is primarily a weight-only quantization method. The
activations remain in higher precision during computation in many implementations.

Similarly, MixDiT (Kim et al., 2025) explores mixed-precision quantization for Diffu-
sion Transformers, addressing the compute-intensive nature of iterative generation. While
successful for image generation, the autoregressive nature of LLMs presents different sensi-
tivity profiles. Text generation is highly sensitive to cumulative error; a small quantization

error in the first token can cascade, leading to nonsensical output after several generation
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steps. This “error drift” is a primary reason why simple integer quantization often fails for
LLMs.

Furthermore, the diversity of edge hardware complicates the environment. A solution
optimized for an NVIDIA Jetson Orin (which has Tensor Cores) (Dr.J.V.Anchitaalagammai
et al., 2025) may not perform efficiently on a Xilinx FPGA running a custom soft-core pro-
cessor (Chang, 2025). The definition of “efficient” changes based on the hardware substrate.
For an FPGA, efficiency is defined by LUT utilization and DSP slice usage. For a CPU, it is
defined by vector instruction usage (e.g., AVX or NEON). This research adopts a hardware-
agnostic view of “integer-only,” defining it by the mathematical constraints of the arithmetic

logic unit (ALU) rather than a specific vendor implementation.

1.8.3 The Role of Neural Architecture Search (NAS)

While this thesis focuses on quantization, it is important to acknowledge parallel
approaches like Neural Architecture Search. Rodriguez (RODRIGUEZ, 2025) introduces
ExNAS, a system for real-time inference optimization via dynamic architecture selection.
While NAS changes the structure of the model to fit the hardware, quantization changes
the representation of the data. These are complementary approaches. A quantized model
can be further optimized via NAS, or a NAS-optimized model can be quantized. However,
quantization offers the distinct advantage of maintaining the original model topology, which

is often easier for deployment pipelines to handle than dynamically changing architectures.

1.9 Summary of Contributions

In summary, this thesis bridges the gap between theoretical compression algorithms
and practical hardware deployment. By rigorously analyzing the interaction between quan-
tization noise, activation outliers, and integer arithmetic constraints, we propose a method-

ology that enables the next generation of “TinyLLMs” (Muller et al., 2024).
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The contributions can be categorized into algorithmic innovations and hardware-

aware implementations. Algorithmically, we refine the handling of outliers without resorting

to floating-point arithmetic. Architecturally, we provide blueprints for integer-only datap-

aths that maximize throughput on FPGA and RISC-V systems.

Table 2 summarizes the specific gaps in existing literature that this thesis addresses.

Literature Domain

Current Limitation

Thesis Contribution

Reference

LLM Quantization

Edge Inference

Hardware Design

System
Integration

Benchmarking

Relies on FP16
fallback for outliers
Focuses on
weight-only
compression
Generic accelerators
(Systolic Arrays)
Software-only
optimization
Theoretical FLOPs

reduction

Pure integer
handling of outliers
Full integer datapath
(W+A)

Configurable arrays
for quantized LLMs
HW/SW Co-design
for latency
Wall-clock latency on

specific HW

(Dettmers et al.,

2022)

(Lin et al., 2023)

(Wang et al., 2025)

(Chang, 2025)

(Martinez et al.,

2025)

Table 2: Research Gaps and Thesis Contributions. This table highlights the specific

disconnects in current literature identified through the review of (Dettmers et al., 2022), (Lin

et al., 2023), (Wang et al., 2025), (Chang, 2025), and (Martinez et al., 2025).

By addressing these specific gaps, this work aims to establish a strong framework for

the deployment of intelligence at the extreme edge, enabling applications that are currently

constrained by the tether to the cloud.
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1.10 Operational Definitions

To ensure clarity throughout this thesis, the following operational definitions are
established for key terms used in the context of quantization and hardware acceleration.

Quantization: The process of mapping a large set of input values (typically contin-
uous floating-point numbers) to a smaller set of output values (typically discrete integers).
In this thesis, we focus primarily on uniform affine quantization.

Integer-Only Hardware: Computing architectures that lack dedicated Floating-
Point Units (FPUs) or where the use of FPUs incurs a prohibitive performance penalty. This
includes specific configurations of FPGAs, microcontrollers, and low-power edge accelerators.

Latency Gap: The discrepancy between the theoretical speedup predicted by the
reduction in model size (e.g., 4x reduction from FP32 to INT8) and the actual observed
speedup in wall-clock time. This gap is often caused by memory bandwidth bottlenecks,
overhead from quantization/dequantization operations, and unoptimized software kernels.

Activation Outliers: Neural network activation values that deviate significantly
from the mean distribution. As identified by Czaké et al. (Czaké et al., 2025), these outliers
in Transformer models (often 6-100x larger than the median) dictate the quantization range,
leading to severe precision loss for the majority of non-outlier values if not handled correctly.

Post-Training Quantization (PTQ): A compression technique that quantizes a
pre-trained model using a small calibration dataset without requiring a full retraining process.
This is distinct from Quantization-Aware Training (QAT), which simulates quantization
effects during the training phase. PTQ is preferred for LLMs due to the prohibitive cost of
retraining (Kim et al., 2024).

Perplexity (PPL): A standard metric for evaluating the quality of language models.
It measures how well a probability model predicts a sample. A lower perplexity indicates a
better model. In the context of quantization, we measure the increase in perplexity (degra-

dation) relative to the full-precision baseline.
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Systolic Array: A network of tightly coupled Data Processing Units (DPUs) where
data flows rhythmically through the network. Wang et al. (Wang et al., 2025) describe config-
urable systolic arrays as a key architecture for efficient matrix multiplication in deep learning.
This thesis explores how quantized data flows can optimize systolic array utilization.

These definitions serve as the vocabulary for the subsequent analysis. The focus
remains steadfast on the intersection of these concepts: how to manage Activation Outliers
using PT'() to minimize Perplexity while maximizing throughput on Integer-Only Hardware

via optimized Systolic Arrays.

1.11 Conclusion of Introduction

The introduction has laid the foundation for the thesis by identifying the critical
tension between the growing complexity of Large Language Models and the constraints of
edge hardware. We have established that while quantization is the most promising solution,
current methods fail to fully uses integer-only architectures due to the handling of activation
outliers and reliance on mixed-precision arithmetic.

By defining the research objectives, scope, and operational terms, we have set the
stage for a detailed exploration of hardware-native quantization. The following chapters will
build upon this foundation, moving from a review of existing literature to the development
and validation of novel integer-only methodologies. The ultimate goal is to demonstrate that
the latency gap can be bridged, unlocking the potential of ubiquitous, private, and efficient
AL
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2. Main Body

2.1.1 Theoretical Framework of Neural Network Quantization

The exponential growth in the parameter count of Large Language Models (LLMs),
exemplified by architectures such as GPT, OPT, and Llama, has created a significant diver-
gence between model capability and deployment feasibility. While these models demonstrate
unprecedented performance in natural language understanding and generation, their compu-
tational and memory requirements often exceed the capacities of commodity hardware and
edge devices. Quantization has emerged as a critical technique to bridge this gap, fun-
damentally altering the representation of neural network parameters from high-precision
floating-point formats (e.g., FP32, FP16) to lower-precision integer representations (e.g.,

INTS8, INT4).

2.1.1.1 Mathematical Formulation

Fundamentally, quantization maps a continuous or high-precision domain to a discrete,
lower-precision domain. In the context of deep learning, this process typically involves
an affine mapping scheme that relates a real-valued number r (weight or activation) to a

quantized integer q. The general quantization function can be expressed as:

q = clamp <round (% + Z) » Diins qmam)

where S represents the scaling factor, Z denotes the zero-point (an integer value

defines the dynamic range of the target

mapping to the real value zero), and [¢,,ins @maz)

integer format (e.g., [—128,127] for signed INTS). The dequantization process, required to
recover the approximation 7 for operations that may still occur in floating-point arithmetic,

is defined as:
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r==5(q-2)

The determination of S and Z is critical to minimizing the quantization error, defined
as E = ||r—7||%. As noted in foundational literature on efficient deep learning methods (Cai
et al., 2022), the choice between symmetric quantization (where Z = 0 and the range is
symmetric around zero) and asymmetric quantization (where Z is calculated to align the
dynamic range exactly with the data distribution) presents a tradeoff between computational
efficiency and representational fidelity. Symmetric quantization is generally preferred for
hardware implementations due to the simplified arithmetic logic-specifically the elimination
of zero-point terms in matrix multiplication—-but can lead to significant precision loss when
data distributions are heavily skewed, a phenomenon frequently observed in the activations

of Transformer-based models.

2.1.1.2 Granularity and Precision

The granularity of quantization—-the scope at which the scaling factors S and zero-
points Z are shared—plays a important role in the balance between compression ratio and
model accuracy.

1. Per-Tensor Quantization: A single scale factor is applied to an entire weight ten-
sor or activation map. While this approach minimizes memory overhead for storing
quantization parameters, it is often insufficient for LLMs due to the high variance in
parameter magnitudes.

2. Per-Channel Quantization: distinct scaling factors are assigned to each output
channel of a weight matrix. This method is widely adopted in Convolutional Neural
Networks (CNNs) and has been adapted for linear layers in Transformers, offering a

strong compromise between overhead and accuracy.
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3. Per-Token/Dynamic Quantization: For activations, scaling factors are calculated
dynamically at runtime for each token. This is particularly relevant for the varying
activation magnitudes encountered during text generation.

4. Group-wise Quantization: Recent advancements have introduced sub-channel or
block-wise quantization, where parameters are grouped (e.g., blocks of 128 weights)
and quantized with shared statistics.

The exploration of customizable precision has also gained traction. Anderson et
al. (Anderson et al., 2019) proposed Scalar Arithmetic Multiple Data (SAMD) architectures
that allow for customizable precision, enabling hardware to adapt to the specific numerical
requirements of different network layers. This aligns with the broader trend of hardware-
software co-design, where the numerical representation is optimized in tandem with the

underlying compute units.

2.1.2 Evolution of Post-Training Quantization (PTQ) for Trans-

formers

Historically, Quantization-Aware Training (QAT)-where the model is retrained or
fine-tuned with simulated quantization noise—yielded the highest accuracy for compressed
models. However, the sheer scale of modern LLMs renders QAT computationally prohibitive
for many practitioners. Consequently, the field has shifted decisively toward Post-Training
Quantization (PTQ) techniques, which aim to quantize a pre-trained model using only a

small calibration dataset and limited compute resources.

2.1.2.1 Hessian-Based Optimization

A significant leap in PTQ efficacy came with the realization that minimizing the mean
squared error (MSE) of weights locally is suboptimal. Instead, determining the optimal
quantized weights requires considering the curvature of the loss environment, represented by

the Hessian matrix.
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Shen et al. (Shen et al., 2020) introduced Q-BERT, a Hessian-based ultra-low preci-
sion quantization method specifically for BERT models. By utilizing second-order informa-
tion, Q-BERT effectively identifies which parameters are most sensitive to quantization noise
(i.e., have high Hessian eigenvalues) and allocates higher precision or specialized quantization
bins to them. This method demonstrated that standard NLP tasks could be maintained at
ultra-low precision, challenging the assumption that Transformers required high-precision
floating-point arithmetic.

Building on this, Frantar et al. (Frantar et al., 2022) developed GPTQ, a break-
through method for generative pre-trained transformers (GPT). GPTQ frames the quantiza-
tion problem as a layer-wise reconstruction task, using approximate Hessian information to
iteratively update the remaining unquantized weights to compensate for the error introduced
by quantizing the current weight. This approach enabled the accurate quantization of mas-
sive models (175B+ parameters) to 3-bit and 4-bit precision within hours on a single GPU.
The success of GPTQ highlighted the importance of correlation between weights; quantizing
one weight introduces an error that can be partially corrected by adjusting its neighbors, a

principle that remains central to current PTQ methods.

2.1.2.2 The Activation Outlier Challenge

While weight quantization has seen rapid progress, activation quantization remains
a formidable bottleneck for LLMs. This is primarily due to the emergence of “outliers”—
activations with magnitudes significantly larger than the mean distribution.

Czaké et al. (Czaké et al., 2025) conducted a systematic review of activation outliers,
identifying them as the primary impediment to low-bit quantization (e.g., INT4) in LLMs.
Their analysis confirms that simply clipping these outliers causes severe degradation in model
performance, as these high-magnitude features often encode critical semantic information.

Conversely, accommodating the outliers by expanding the quantization range (¢,,40 — %min)
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forces the majority of values into a tiny subset of the available integer bins, resulting in a
catastrophic loss of precision for the bulk of the signal.
Two seminal approaches have addressed this specific challenge:

1. Mixed-Precision Decomposition: Dettmers et al. (Dettmers et al., 2022) in-
troduced LLM.int8(), a technique that decomposes matrix multiplications into two
streams. The vast majority of the computation (99.9%) is performed in INTS8
vector-wise quantization, while the outlier dimensions (identified by a magnitude
threshold) are extracted and computed in FP16. This hybrid approach allows
for significant memory reduction while preserving the inference quality of the full-
precision model. The authors demonstrated that this outlier phenomenon is emergent,
appearing abruptly as model scale increases, suggesting a phase transition in how
large Transformers represent features.

2. Activation-Aware Weight Quantization (AWQ): Lin et al. (Lin et al., 2023)
proposed AWQ, which operates on the insight that not all weights are equally important
for preserving the distribution of activations. Instead of mixed-precision inference
(which can incur hardware overhead due to branch divergence and format conversion),
AWQ protects salient weights—those corresponding to large activation magnitudes—
by scaling them. Importantly, AWQ keeps the hardware implementation efficient by
focusing on weight-only quantization adjustments that account for activation statistics,
avoiding the runtime overhead of checking for outliers during inference.

Table 1 summarizes the key distinctions between these dominant PT(Q approaches.

Method Primary Target Mechanism Hardware Implication Source

Q-BERT BERT-like models Hessian-based ~ Requires specialized kernels — (Shen et
mixed al., 2020)

precision
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Method Primary Target Mechanism Hardware Implication Source

GPTQ Generative LLMs Inverse Efficient on standard GPUs  (Frantar et
Hessian weight al., 2022)
updates

LLM.int8() Large Transformers  Mixed Requires FP16 support (Dettmers
INT8/FP16 et al.,
decomposition 2022)

AWQ Large Transformers  Activation- Integer-only inference (Lin et al.,
aware scaling  friendly 2023)

Table 1: Comparison of prominent Post-Training Quantization (PT(Q)) methodologies

for Transformer-based models.

2.1.2.3 Quantization in Hybrid and Diffusion Models

The principles of quantization are also being adapted for architectures beyond pure
text-based Transformers. Kim et al. (Kim et al., 2024) introduced HyQ, a hardware-friendly
PTQ method for CNN-Transformer hybrid networks. These hybrids, often used in vision
tasks, present unique challenges because the statistical properties of Convolutional layers
(Gaussian-like) differ markedly from Transformer Attention layers (Laplacian/Heavy-tailed).
Hy(Q addresses this by applying distinct quantization strategies to the heterogeneous com-
ponents of the network.

Similarly, the rise of diffusion models for image generation has prompted research into
their efficiency. Kim et al. (Kim et al., 2025) proposed MixDiT, a method for accelerating
Image Diffusion Transformers using mixed-precision quantization. Given the iterative nature
of diffusion processes, where the model is called dozens or hundreds of times per image,
the latency savings from quantization are multiplicative. MixDiT demonstrates that the

sensitivity of diffusion models to quantization noise varies across the denoising timesteps,
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allowing for aggressive quantization at certain stages of generation while retaining higher

precision at others.

2.1.3 Hardware Architectures for Quantized Inference

The theoretical benefits of quantization—reduced memory bandwidth usage and lower
arithmetic complexity—can only be realized if the underlying hardware architecture is de-
signed to exploit low-precision integer operations. The literature reveals a diverse environ-
ment of hardware solutions, ranging from general-purpose CPUs to specialized FPGAs and

systolic arrays.

2.1.8.1 FPGA and Reconfigurable Computing

Field-Programmable Gate Arrays (FPGAs) offer a fertile ground for experimenting
with non-standard quantization schemes due to their bit-level configurability. Muller et
al. (Muller et al., 2024) explored the co-design of a “TinyLLM” using programmable logic,
emphasizing the synergy between model architecture and hardware constraints. By tailoring
the LLM’s dimensions and precision to the specific DSP (Digital Signal Processing) slice
configurations of the FPGA, they achieved significant efficiency gains over generic imple-
mentations.

Chang (Chang, 2025) further advanced this domain by proposing a hardware-software
co-design for efficient LLM inference on PCle-based FPGAs. Their work focuses on Coarse-
Grained Systolic Arrays (CGSAs). Unlike traditional fine-grained systolic arrays utilized
in Google’s TPU, CGSAs offer a balance of flexibility and throughput, which is important
for handling the dynamic attention patterns of Transformers. The ability to reconfigure the
data flow allows the hardware to adapt to different quantization granularities (e.g., switching
between per-token and per-tensor scaling) without stalling the pipeline.

The utility of FPGAs extends to specialized generative tasks as well. Sadr et al. (Sadr
et al., 2025) demonstrated FPGA-accelerated real-time DCGANs (Deep Convolutional Gen-
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erative Adversarial Networks) using Xilinx DPUs. While focused on GANS; the principles of
mapping matrix multiplications to integer-optimized DPU engines are directly transferable

to the linear layers of LLMs.

2.1.8.2 Edge Computing and Mobile Architectures

Deploying LLMs on edge devices (smartphones, IoT sensors) imposes strict power
and thermal envelopes. Martinez et al. (Martinez et al., 2025) investigated latency-critical
quantized inference on ARM and RISC-V CPUs. Their research highlights a critical “la-
tency gap”: theoretical reductions in model size (e.g., 4x compression from FP16 to INT4)
rarely translate to linear speedups on general-purpose CPUs due to the overhead of pack-
ing/unpacking bits and the lack of native INT4 instruction sets. They argue that for these
architectures, memory bandwidth is often the bottleneck, making weight quantization highly
effective even if the computation is performed in a higher precision.

In the field of dedicated edge accelerators, Dr. J.V. Anchitaalagammai et
al. (Dr.J.V.Anchitaalagammai et al., 2025) evaluated platforms like the NVIDIA Jet-
son Orin and Google Coral Edge TPU. These devices are equipped with tensor cores
specifically designed for INTS8 inference. The study emphasizes the role of “Edge AI” in
enabling real-time decision-making without cloud dependency, citing privacy and scalability
as key drivers. However, they note that the software stack for deploying custom quantized
LLMs (as opposed to standard CNNs) on these devices remains immature, often requiring

complex graph compilation steps.

2.1.8.8 Systolic Arrays and GPGPU Optimization

For high-throughput scenarios, Graphics Processing Units (GPGPUs) remain the
dominant platform. Wang et al. (Wang et al., 2025) proposed X-SA, an efficient configurable
systolic array architecture for GPGPUs. Systolic arrays, which pump data through a grid of

processing units to maximize data reuse, are the backbone of modern matrix multiplication
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acceleration. X-SA addresses the rigidity of traditional fixed-size systolic arrays, allowing for

configuration changes that better match the irregular matrix shapes often found in sparse

or quantized neural networks.

Dua and Patel (Dua & Patel, 2024) provide a broader perspective on hardware opti-

mization for generative Al, arguing that sustainability must be a primary design metric. As

LLM workloads consume increasing amounts of global energy, hardware that natively sup-

ports lower precision (and thus lower switching activity) is essential for reducing the carbon

footprint of Al

Table 2 synthesizes the hardware-specific approaches reviewed.

Architecture Key Optimization Strategy Primary Benefit Limitation Source
FPGA Bit-level manipulation, High efficiency per Programming (Muller
Co-design watt complexity et al.,
2024)(Chang,
2025)
ARM/RISC-V  SIMD instruction utilization =~ Ubiquity in edge Lack of (Martinez
devices native INT4 et al.,
support 2025)
Systolic Array ~ Data reuse maximization High throughput Rigidity for  (Wang
dynamic et al.,
shapes 2025)
Edge TPU Dedicated INTS8 tensor cores  Low latency Limited (Dr.J.V.Anchitaalagammai
inference model et al.,
flexibility 2025)

Table 2: Comparative analysis of hardware architectures for quantized neural network

inference.
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2.1.4 The Role of Outlier Suppression in Integer-Only Datapaths

A recurring theme in the recent literature is the necessity of handling activation
outliers to enable true integer-only inference. While methods like LLM.int8() (Dettmers et
al., 2022) successfully preserve accuracy, their reliance on mixed-precision (FP16) for outliers
prevents the utilization of integer-only hardware accelerators (e.g., integer NPU blocks that
lack floating-point units).

Czaké et al. (Czaké et al., 2025) emphasize that for integer-only hardware, the outlier
problem must be solved before quantization or through integer-compatible transformations.
This has led to a class of techniques involving “smooth quantization” or activation redistribu-
tion. By mathematically smoothing the activation spikes—effectively migrating the difficulty
of quantization from the activations to the weights—these methods render the activations
more amenable to uniform quantization. Since weights are static, they can be pre-processed
offline to accommodate the smoothing factor, allowing the runtime inference to remain fully
integer-based.

The implications of this are profound for hardware design. If outliers can be sup-
pressed or managed algorithmically, hardware designers need not implement costly floating-
point fallback mechanisms or complex mixed-precision datapaths. This simplifies the control
logic and reduces the silicon area required for arithmetic units, allowing for more compute

density.

2.1.5 Applications and Domain-Specific Quantization

The application of quantized models extends into critical domains where reliability

and efficiency are essential.
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2.1.5.1 Biomedical and Healthcare

In the biomedical field, Bouaggad and Grabar (Bouaggad & Grabar, 2025) explored
search-optimized quantization for ontology alignment. This highlights a niche but critical
application of NLP in organizing medical knowledge. Similarly, Kapo et al. (Kapo et al.,
2024) evaluated deep learning models for brain tumor segmentation using Intel’s OpenVINO
toolkit. While their work focuses on vision models (DeepLabV3+, UNet), the deployment
pipeline using OpenVINO is illustrative of the standard industry workflow: model training —
optimization/quantization — deployment on CPU/VPU. The sensitivity of medical diagnosis
necessitates rigorous validation of quantized models to ensuring that the loss of precision does

not lead to clinical errors.

2.1.5.2 Communications and Sensing

The integration of sensing and communication (ISAC) systems also benefits from
quantization. Zhu et al. (Zhu et al., 2025) analyzed fronthaul quantization bits allocation in
cell-free ISAC systems. Here, quantization is applied not just to model weights, but to the
signals transmitted between access points and processing units. This parallel demonstrates
the universality of quantization theory: whether compressing a neural network weight or a
radio signal, the goal is to maximize information density under bandwidth constraints.

In the field of surveillance, Dilshad et al. (Dilshad et al., 2023) proposed efficient
frameworks for fire detection. The deployment of such models in complex environments
(e.g., remote forests with solar-powered cameras) demands extreme energy efficiency, making

low-bit quantization a mandatory rather than optional optimization.
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2.1.6 Emerging Trends: Neural Architecture Selection and Dy-

namic Memory

Beyond static quantization, dynamic approaches are gaining attention. Rodriguez
(RODRIGUEZ, 2025) introduced “Experiential Neural Architecture Selection” (ExNAS), a
system that performs real-time inference optimization. ExNAS addresses the “operational
amnesia” of neural networks by dynamically selecting efficient sub-architectures based on
input context. This concept aligns with dynamic quantization, suggesting a future where
the model’s precision and architecture fluidly adapt to the difficulty of the incoming token.

Furthermore, Auten et al. (Auten et al., 2020) discussed hardware acceleration for
Graph Neural Networks (GNNs). As LLMs increasingly interact with structured knowledge
graphs (RAG - Retrieval Augmented Generation), the ability to efficiently quantize and

execute GNNs alongside Transformers will become a critical system-level requirement.

2.1.7 Research Gaps and Synthesis

Despite the extensive body of work reviewed, several critical research gaps remain,

which this thesis aims to address.

2.1.7.1 The Latency Gap in Integer-Only Inference

A significant disconnect exists between the theoretical compression ratios achieved
by methods like GPTQ (Frantar et al., 2022) and AWQ (Lin et al., 2023) and the actual
wall-clock speedup observed on commodity hardware. As noted by Martinez et al. (Martinez
et al., 2025), the lack of native support for sub-byte (e.g., INT4) arithmetic on many CPUs
means that 4-bit weights must be unpacked to 8-bit or 16-bit registers for computation,
consuming cycles that negate the memory bandwidth savings. There is a need for “hardware-
native” quantization strategies that align the data format directly with the instruction set

architecture (ISA).
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2.1.7.2 Lack of Strong Integer-Only Solutions for Outliers

While Czako et al. (Czakd et al., 2025) identified the outlier problem, most exist-
ing solutions (Dettmers et al., 2022) rely on mixed-precision fallbacks. True integer-only
solutions that can handle extreme outliers without reverting to FP16 are scarce. This limita-
tion prevents the deployment of advanced LLMs on the most constrained class of hardware:

microcontrollers and integer-only NPUs lacking floating-point units.

2.1.7.3 Disconnect Between Co-Design and Post-Training Methods

The literature on FPGA co-design (Muller et al., 2024)(Chang, 2025) often operates
in isolation from the advanced PTQ algorithmic community. Algorithmic papers typically as-
sume a GPU target, while hardware papers often use simpler quantization schemes to demon-
strate circuit efficiency. There is a gap in applying advanced, Hessian-based, activation-aware

quantization specifically tailored for the constraints of Coarse-Grained Systolic Arrays.

2.1.7.4 Standardization of Fvaluation Metrics

Finally, there is inconsistency in how quantization degradation is reported. Some
studies report perplexity, others accuracy on downstream tasks, and others purely signal-
to-noise ratio (SNR). As highlighted in the guest editorial by Akita et al. (Akita et al.,
2025), standardized benchmarking protocols are essential for the maturation of the solid-
state circuit and systems community:.

In conclusion, the literature establishes that while weight quantization is a solved
problem for moderate compression, the frontier lies in activation quantization for large
transformers and the development of integer-only datapaths that can robustly han-
dle the statistical anomalies inherent in these models. This thesis builds upon the founda-
tional work of activation-aware methods (Lin et al., 2023) and hardware-adaptive frameworks

(Chang, 2025) to propose a unified strategy for hardware-native quantization.
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2.2 Methodology

2.2.1 Research Design and Scope

This thesis employs a narrative review and theoretical synthesis methodology to
address the “latency gap” in Large Language Model (LLM) quantization on integer-only hard-
ware architectures. Unlike empirical studies that focus on the fabrication of a single chip or
the development of an isolated algorithm, this research adopts a comprehensive hardware-
software co-design perspective. The primary objective is to synthesize disparate findings
from algorithmic optimization literature (e.g., post-training quantization) and hardware im-
plementation research (e.g., FPGA and ASIC design) to propose a unified “Hardware-Native”
quantization strategy.

The research design is qualitative and interpretative, focusing on the comparative
analysis of existing quantization frameworks to identify architectural bottlenecks. While
systematic reviews (e.g., PRISMA) aim for exhaustive statistical aggregation, a narrative
approach was selected for this thesis to allow for the critical integration of heterogeneous data
sources—ranging from theoretical algorithmic proofs to practical circuit-level implementation
reports. This approach enables the construction of a coherent narrative that bridges the
disconnect between theoretical compression rates and realized wall-clock latency, a central
problem identified in recent literature (Czaké et al., 2025)(Chang, 2025).

The methodology is structured around three core phases: (1) a targeted literature
acquisition strategy focusing on the intersection of activation outliers and integer datapaths;
(2) a structured extraction and normalization of performance metrics (latency, perplexity,
energy efficiency); and (3) a theoretical synthesis phase where a proposed hardware-native
framework is conceptually validated against established constraints derived from the litera-

ture.
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2.2.1.1 Theoretical Framework Alignment

The analysis is grounded in the principles of hardware-software co-design, specifically
examining the friction between algorithmic complexity and hardware simplicity. The the-
oretical lens applied here posits that quantization efficiency cannot be measured solely by
model size reduction (bit-width) but must be evaluated against the “computational cost
of decompression” or outlier handling. This framework draws upon the foundational work
of hardware-aware optimization (Cai et al., 2022)(Chang, 2025), extending it to specific
constraints of integer-only processing units (NPUs) and microcontrollers which lack floating-

point units (FPUs).

2.2.2 Literature Search and Selection Strategy

To ensure a comprehensive coverage of the rapidly evolving field of LLM quantization,
academic sources were identified through targeted searches of major technical databases
including IEEE Xplore, ACM Digital Library, Semantic Scholar, and arXiv. The search
strategy prioritized recent publications, specifically focusing on the period from 2019 to 2025,
to capture the emergence of Transformer-based architectures and the subsequent explosion

of quantization techniques following the release of models like LLaMA and GPT-3.

2.2.2.1 Search Parameters and Keywords

The search process utilized a combination of keywords designed to intersect algo-
rithmic techniques with hardware targets. Boolean operators were employed to refine the
scope. Key search strings included: - (“Large Language Model” OR “Transformer”) AND
(“Quantization” OR “Compression”) - (“Integer-only” OR “Int8” OR “Int4”) AND (“Infer-
ence” OR “Latency”) - (“FPGA” OR “Systolic Array” OR “NPU”) AND (“Co-design” OR
“Hardware-aware”) - (“Activation Outliers” OR “Outlier Suppression”) AND (“Post-Training

Quantization”)
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Special attention was paid to preprints and conference proceedings (e.g., NeurIPS,
ICML, DAC, ISSCC), as the velocity of research in this domain often results in critical ad-
vancements appearing in these venues prior to journal publication. For instance, seminal
works on activation-aware quantization (Lin et al., 2023) and integer-only matrix multipli-

cation (Dettmers et al., 2022) were initially identified through preprint repositories.

2.2.2.2 Inclusion and Exclusion Criteria

Given the volume of literature on general neural network compression, strict criteria
were applied to filter for relevance to integer-only constraints and generative models. A total

of 26 primary sources were selected for detailed analysis based on their direct contribution

to the thesis topic.

Criterion Category

Inclusion Criteria

Exclusion Criteria

Topic Relevance

Hardware Scope

Methodology

Recency

Publication Type

Focus on Transformers,
LLMs, or integer-only
hardware

FPGAs, ASICs, Integer

NPUs, Microcontrollers

PTQ, QAT,
Hardware-Software
Co-design

Published 2019-2025

(post-BERT era)

Peer-reviewed papers,

high-impact preprints

General CNN compression
without Transformer
application

Cloud-based GPU clusters
(unless for baseline
comparison)

Network Pruning, Distillation
(unless combined with
quantization)

Pre-2018 works (except
foundational arithmetic
theory)

Non-technical blog posts,

white papers without data

Table 1: Criteria used for the selection of primary literature sources.
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The exclusion of general CNN-focused literature was necessary because the statistical
distribution of activations in Convolutional Neural Networks differs fundamentally from the
heavy-tailed distributions observed in Transformers (Kim et al., 2024). Consequently, meth-
ods effective for CNNs often fail for LLMs, making their inclusion potentially confounding

for the specific problem of activation outlier handling in language models.

2.2.3 Data Extraction and Analysis Framework

Following the selection of sources, a structured data extraction process was employed
to normalize findings across different hardware platforms and model architectures. This
phase was critical because the literature lacks standardized reporting metrics; some stud-
ies report theoretical FLOPs reduction, while others report end-to-end latency or energy

consumption.

2.2.8.1 Metric Normalization

To facilitate meaningful comparison, reported metrics were categorized into three
dimensions: Model Quality (Perplexity, Accuracy), Hardware Efficiency (Latency,
Throughput, Area), and Implementation Complexity (Calibration time, Hardware
requirements).

When analyzing hardware papers, specific attention was given to the implementation
of the datapath. For example, papers describing FPGA implementations (Muller et al.,
2024)(Chang, 2025)(Sadr et al., 2025) were analyzed to extract the specific handling of non-
linear operations (Softmax, LayerNorm) and the precision used for accumulators. This
allowed for the identification of “hidden” floating-point operations that often remain in
supposedly “integer-only” designs.

Similarly, for algorithmic papers (Dettmers et al., 2022)(Frantar et al., 2022)(Lin
et al., 2023), the analysis focused on the runtime overhead introduced by the quantization

scheme. For instance, while LLM.int8() (Dettmers et al., 2022) achieves excellent perplexity
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preservation, the analysis sought to quantify the latency penalty incurred by its mixed-

precision decomposition step.

Metric Domain Key Indicator Unit of Measure Relevance to Thesis
Quality Perplexity (PPL) Score (Lower is Measures preservation of
better) linguistic capability
Speed Inference Latency ~ Milliseconds (ms) / Real-world usability on
Tokens per second edge devices
Efficiency Energy Delay Joules x Seconds Battery life impact for
Product mobile deployment
Hardware Logic Utilization LUTs / DSP Slices Feasibility on constrained
FPGAs
Precision Effective Bit Width Bits (e.g., W4AS) Memory bandwidth
requirements

Table 2: Key performance indicators extracted for comparative analysis.

2.2.3.2 Comparative Analysis Approach

The analysis uses a “Gap Analysis” technique. By juxtaposing the capabilities of
current algorithms against the constraints of target hardware, specific gaps were identified.
For example, the analysis checks if an algorithm requiring dynamic, channel-wise scaling
factors (Lin et al., 2023) is compatible with the fixed dataflow of a coarse-grained systolic
array (Wang et al., 2025). This cross-domain mapping reveals where algorithmic innovation
has outpaced hardware flexibility, or conversely, where hardware capabilities (like mixed-
precision DSPs) are underutilized by current quantization schemes.

Theoretical validation of these gaps is supported by mathematical formulations of the
quantization error and hardware cost functions. The methodology involves reconstructing

the arithmetic operations required by each reviewed method and estimating their cycle count
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on a standard integer-only architecture (e.g., RISC-V or ARM Cortex-M) as described in

(Martinez et al., 2025).

2.2.4 Theoretical Synthesis of Hardware-Native Strategies

The final phase of the methodology involves synthesizing the extracted data to con-
struct the proposed “Hardware-Native Quantization” framework. This is a constructive
research process where the design parameters of the proposed solution are derived directly

from the limitations identified in the literature analysis.

2.2.4.1 Derivation of Design Constraints

The synthesis process begins by defining the “Hard Constraints” of the target archi-
tecture. Based on the review of integer-only hardware (Muller et al., 2024)(Chang, 2025), the
following constraints are established for the theoretical framework: 1. No Floating-Point
Unit (FPU): All arithmetic, including scaling and activation functions, must be performed
using integer or fixed-point logic. 2. Linear Memory Access: Complex packing schemes
that require random access or gather/scatter operations are penalized due to their impact on
memory bandwidth. 3. SIMD Compatibility: The quantization granularity must align

with standard bus widths (e.g., 128-bit or 256-bit vectors) to maximize throughput.

2.2.4.2 Integration of Algorithmic Innovations

Within these hardware constraints, the methodology integrates algorithmic insights.
The “outlier suppression” concept is adapted from (Czaké et al., 2025) and (Dettmers et al.,
2022), but the implementation mechanism is theoretically modified to avoid mixed-precision.
Instead of decomposing matrices at runtime (which requires complex control logic), the
synthesis explores the feasibility of static, offline transformations (like rotation or smooth

quantization) that shift the complexity from inference time to compile time.
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This synthesis draws heavily on the “Activation-aware Weight Quantization” (AWQ)
principles (Lin et al., 2023) but reinterprets them for systolic array architectures (Wang et
al., 2025). By theoretically mapping the AWQ scaling factors to the bias inputs of a systolic
processing element, the methodology proposes a way to achieve activation awareness without

modifying the core MAC (Multiply-Accumulate) unit.

2.2.4.83 Fvaluation of the Proposed Framework

Since this thesis relies on a narrative review and theoretical proposal, the evaluation of
the proposed framework is analytical rather than empirical. The methodology for evaluation
involves: 1. Arithmetic Intensity Analysis: Calculating the number of operations per
byte of data transfer for the proposed method compared to standard baselines (e.g., GPTQ
(Frantar et al., 2022)). 2. Datapath Simulation: Creating a theoretical register-transfer
level (RTL) flow diagram to trace the movement of data through the proposed integer-only
pipeline, identifying potential stalls or bubbles. 3. Error Bound Estimation: Using
statistical error models from (Shen et al., 2020) (Hessian-based analysis) to estimate the

theoretical perplexity degradation of the proposed integer-only approximation.

2.2.5 Limitations of the Methodology

It is important to acknowledge the limitations inherent in this narrative review and
theoretical synthesis approach. First, without physical hardware implementation and mea-
surement, the latency benefits of the proposed “Hardware-Native” strategy remain theoret-
ical estimates. While these estimates are grounded in architectural principles derived from
(Chang, 2025) and (Martinez et al., 2025), actual silicon behavior can be influenced by fac-
tors such as thermal throttling, memory controller contention, and manufacturing process
variations which are outside the scope of this analysis.

Second, the rapid pace of the field means that “current” is a moving target. As noted

in the guest editorial by Akita et al. (Akita et al., 2025), the lack of standardized benchmark-
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ing protocols makes cross-paper comparisons difficult. A reported “4-bit quantization” in
one paper might involve extensive floating-point zero-point calculations, while another might
be strictly integer-based. This thesis attempts to normalize these discrepancies through care-
ful reading of the methodology sections of reviewed papers, but some ambiguity inevitably
remains where implementation details are proprietary or closed-source.

Finally, the selection of literature, while comprehensive, is bounded by the search
terms and databases used. The focus on integer-only architectures means that emerging
analog in-memory computing or optical computing approaches are excluded, potentially
overlooking radical alternative solutions to the energy efficiency problem. However, this
scoping is necessary to maintain depth and coherence regarding the specific challenge of

deploying LLMs on standard digital logic and commercial edge devices.

2.2.6 Ethical and Validity Considerations

In conducting this review, strict adherence to academic integrity regarding citation
and representation of prior work is maintained. The synthesis ensures that the distinction
between an author’s original finding and this thesis’s interpretation of that finding is clear.
When comparing competing methods—for instance, the different outlier handling strategies
in (Czaké et al., 2025) versus (Lin et al., 2023)-the analysis strives for neutrality, evaluating
each based on the established metrics of latency and perplexity rather than preference.

To ensure validity in the theoretical proposal, the “Hardware-Native” framework is
constructed using a “lowest common denominator” assumption regarding hardware capa-
bilities. By assuming the most constrained hardware environment (e.g., a microcontroller
without vector extensions, as discussed in (Muller et al., 2024)), the proposed methodology
ensures that the resulting strategy is strong and broadly applicable, rather than being over-
fitted to a specific high-end accelerator. This conservative approach enhances the reliability

of the theoretical conclusions drawn from the literature synthesis.
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2.2.6.1 Handling of Conflicting Data

In cases where literature presents conflicting data—such as divergent reports on the
efficacy of post-training quantization for outliers—this thesis adopts a “context-aware” reso-
lution strategy. For example, if (Dettmers et al., 2022) reports that outliers require FP16,
while (Lin et al., 2023) suggests they can be handled via scaling, the methodology inves-
tigates the context: model size, architecture (e.g., OPT vs. LLaMA), and evaluation task.
This nuance prevents oversimplification and ensures that the synthesized conclusions respect
the complexity of the underlying engineering challenges.

By rigorously applying this qualitative framework, the methodology transforms a
collection of isolated papers into a structured design space, enabling the identification of the

“Hardware-Native” sweet spot that forms the core contribution of this thesis.

2.2.7 Mathematical Notation and Theoretical Models

To formalize the comparison of quantization schemes found in the literature, this
thesis adopts a unified mathematical notation. This allows for the precise description of the
quantization operations and the analysis of error propagation.

The general quantization function used to analyze the literature is defined as:

Q(z) = clamp (Lf + 2], @i qmax>

Where z is the real-valued input (weight or activation), s is the scaling factor, z is
the zero-point, and [¢,,in, Gmas) defines the integer range (e.g., [—128,127] for INTS).
The analysis of quantization error in the reviewed literature (Shen et al., 2020)(Cai

et al., 2022) often relies on the Mean Squared Error (MSE) objective:

min E[(z —2)°]
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However, for the specific problem of outlier suppression, this thesis uses the Hessian-
based sensitivity metric highlighted in (Shen et al., 2020) and (Frantar et al., 2022) to eval-
uate the theoretical impact of mixed-precision strategies. The perturbation cost is modeled

as:

0L ~ AwTHAwW

Where H is the Hessian matrix of the loss function with respect to the weights, and
Aw is the quantization noise. This mathematical framework is essential for the “Theoret-
ical Synthesis” phase (Section 2.2.4), as it provides the tool to analytically verify whether
a proposed integer-only approximation (which changes Aw) will result in acceptable loss
degradation L without requiring full empirical retraining.

This rigorous mathematical grounding ensures that the qualitative narrative is sup-
ported by quantitative logic, bridging the gap between high-level architectural concepts and

low-level arithmetic reality.

2.3 Analysis and Results

2.3.1 Quantitative Impact of Bit-Width Reduction on Model Fi-

delity

The analysis of recent literature reveals a fundamental tension between quantiza-
tion aggressiveness (bit-width reduction) and model fidelity. As defined in the methodol-
ogy, the quantization function @(z) introduces an irreversible information loss, modeled as
quantization noise Aw. The synthesis of findings from the reviewed studies (Czaké et al.,
2025)(Dettmers et al., 2022)(Frantar et al., 2022) indicates that this noise is not uniformly
distributed across model parameters, nor does it impact model performance linearly. Rather,

the analysis demonstrates that the sensitivity of Large Language Models (LLMs) to quanti-
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zation is highly heterogeneous, heavily dependent on specific architectural components and

the presence of activation outliers.

2.3.1.1 Sensitivity Analysis via Hessian Metrics

A critical finding emerging from the literature is the efficacy of second-order infor-
mation in predicting quantization degradation. While naive methods often minimize Mean
Squared Error (MSE) in a component-wise fashion, research utilizing Hessian-based met-
rics (Frantar et al., 2022)(Shen et al., 2020) demonstrates that the curvature of the loss
environment provides a superior proxy for post-quantization performance.

The perturbation cost, as analyzed in Hessian-based frameworks, is approximated by:

1
0L ~ §AWTHAW

where H represents the Hessian matrix. The analysis of Q-BERT (Shen et al., 2020)
indicates that different layers within Transformer architectures exhibit vastly different spec-
tral properties in their Hessian matrices. Layers with larger eigenvalues in H are significantly
more sensitive to quantization noise Aw. Consequently, a uniform quantization strategy
(e.g., applying INTS8 globally) is suboptimal because it allocates the same bit-budget to
insensitive layers (low curvature) as it does to highly sensitive layers (high curvature).

The findings from GPTQ (Frantar et al., 2022) further substantiate this analysis. By
utilizing an approximate inverse Hessian to adjust weights, the algorithm compensates for
the quantization error of one weight by updating the remaining unquantized weights in the
same block. The results reported in (Frantar et al., 2022) show that this approach allows
for accurate 4-bit and 3-bit quantization of billion-parameter models (such as OPT and
BLOOM), whereas naive rounding techniques typically fail at these compression levels. This
confirms that the structure of the quantization error matters more than the raw magnitude

of the error.
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2.3.1.2 The Outlier Phenomenon in Activation Spaces

A dominant theme in the analysis of quantization failure modes is the presence of

extreme outliers in activation distributions. Research by Dettmers et al. (Dettmers et al.,

2022) identifies a phase transition in Transformer models as they scale. In smaller models,

activations tend to be normally distributed. However, as model size increases (specifically

beyond 6.7B parameters), systematic outliers emerge in specific feature dimensions.

Table 1 summarizes the characteristics of these outliers based on the reviewed litera-

ture.
Impact on

Feature Characteristics Quantization Source

Magnitude Up to 20x larger Skews quantization (Dettmers et al.,
than median grid 2022)

Sparsity Present in < 0.1% of  Dictates dynamic (Czaké et al., 2025)
channels range

Persistence Consistent across Cannot be clipped (Lin et al., 2023)
tokens safely

Origin Emerges at scale Disrupts INTS (Dettmers et al.,
(>6B params) inference 2022)

Solution Mixed-precision / Preserves dense (Lin et al., 2023)
Scaling signal

Table 1: Characteristics of Activation Qutliers in Large Language Models.

The existence of these outliers fundamentally breaks standard minimax quantization

schemes. If the scaling factor s is determined by the maximum absolute value (|z|,,,..), the

presence of a single outlier x

outlier

> median(z) forces s to be large. This expands the

quantization bins (step size), causing the vast majority of “normal” values to collapse into
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a small number of bins (e.g., zero or 4+1). This results in a catastrophic loss of precision for
the core signal.

The analysis of LLM.int8() (Dettmers et al., 2022) reveals that these outliers are
critical for model performance and cannot simply be truncated. Their method decomposes
matrix multiplications into two parts: a 16-bit vector-matrix multiplication for the outlier
dimensions (approx. 0.1%) and an 8-bit multiplication for the regular dimensions (99.9%).
This mixed-precision decomposition allows for inference with no degradation in perplexity
compared to FP16 baselines, confirming that the sensitivity to quantization is sparse and
structured.

Similarly, the analysis of Activation-aware Weight Quantization (AWQ) (Lin et al.,
2023) suggests that protecting these salient weights is more efficient than decomposing com-
putations. Instead of keeping outliers in FP16, AW(Q applies per-channel scaling to protect
salient weights, demonstrating that “not all weights are created equal.” By analyzing the
activation magnitude, AW(Q identifies which weights are multiplied by large activations and

scales them to reduce quantization error in those specific channels.

2.3.2 Comparative Analysis of Post-Training Quantization (PTQ)

Techniques

The literature review identifies Post-Training Quantization (PTQ) as the dominant
paradigm for LLMs, primarily due to the prohibitive computational cost of Quantization-
Aware Training (QAT) for models with hundreds of billions of parameters. The analysis of
recent PTQ methodologies reveals a progression from simple rounding techniques to sophis-

ticated optimization-based solvers.

2.3.2.1 Rounding vs. Optimization

Standard Round-to-Nearest (RTN) quantization is computationally inexpensive but

often results in significant accuracy degradation for low bit-widths (e.g., W4A16 or W4A4).
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The analysis of the literature indicates that optimization-based approaches, while more
computationally intensive during the calibration phase, yield superior inference-time per-
formance.

The GPTQ algorithm (Frantar et al., 2022) represents a significant advancement in
this domain. By formulating quantization as a layer-wise reconstruction problem, GPTQ
solves for the optimal quantized weights W that minimize the squared error of the layer

output, weighted by the inverse Hessian:

argming,||[WX — WX||2

The results indicate that this method achieves perplexity scores comparable to the
full-precision baseline for OPT-175B and BLOOM-175B models using only 4 bits per weight.
This represents a 4x compression ratio over FP16 and an 8x compression over FP32. The
analysis highlights that the key to this success is the “Lazy Batch-Updates” scheme, which
allows the Hessian information to be updated efficiently, making the process feasible for

massive models.

2.3.2.2 Activation-Awareness as a Differentiator

A critical distinction emerging from the analysis is the role of activation data in guid-
ing weight quantization. Traditional weight quantization methods often determine scaling
factors based solely on the distribution of weights. However, the findings from (Lin et al.,
2023) and (Czako et al., 2025) argue that this is insufficient because it ignores the input
distribution.

AWQ (Lin et al., 2023) operates on the premise that a weight’s importance is pro-
portional to the magnitude of the activation it processes. The analysis shows that by scal-
ing up the salient weight groups (and scaling down the corresponding activations) prior to

quantization, the relative quantization error for important features is reduced. This method
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avoids the hardware overhead of mixed-precision execution (as required by LLM.int8()) while
achieving superior accuracy compared to RTN.
Table 2 presents a comparative analysis of the primary quantization paradigms iden-

tified in the literature.

Representative Optimization Hardware
Paradigm Method Target Impact Limitations
Decomposition LLM.int8() Outlier isolation = Kernel switching Latency penalty
(Dettmers et al., overhead
2022)
Hessian-based GPTQ (Frantar  Output Efficient Calibration cost
et al., 2022) reconstruction unpacking
Activation- AWQ (Lin et al., Salience Standard Search space
aware 2023) protection GEMM
Sensitivity- Q-BERT (Shen  Curvature Mixed-precision  Complex logic
based et al., 2020) (Hessian) layers

Table 2: Comparative Analysis of Quantization Paradigms.

The data suggests a trend towards methods that modify the model weights to be
more quantization-friendly (AWQ, GPTQ) rather than modifying the inference kernel to
handle complexity (LLM.int8()). This shift is driven by the need for efficient deployment
on standard hardware accelerators where control-flow divergence (like conditional mixed-

precision) incurs latency penalties.

2.3.2.3 Systematic Review Findings on Qutlier Mitigation

The systematic review by Czaké et al. (Czako et al., 2025) provides a comprehensive
categorization of outlier mitigation strategies. The analysis of this review confirms that
“outlier suppression” is the central challenge for modern quantization. The review finds

that techniques can be broadly categorized into: 1. Clipping: Simple but lossy; effective
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only if outliers are non-informative (which (Dettmers et al., 2022) refutes). 2. Smoothing:
Mathematically smoothing the distribution (e.g., SmoothQuant, though not explicitly in the
citation list, is implied by the discussion of activation smoothing in (Czaké et al., 2025)). 3.
Splitting: Separating outliers (LLM.int8()).

The consensus across the analyzed literature is that for 4-bit quantization and below,
simple clipping is catastrophic. Strategies must explicitly account for the heavy-tailed nature

of activation distributions.

2.3.3 Hardware-Specific Analysis: Efficiency and Latency

The theoretical reduction in model size via quantization does not always translate
linearly to latency reduction or energy savings. The analysis of hardware-centric literature
(Muller et al., 2024)(Chang, 2025)(Martinez et al., 2025) reveals that the actualized perfor-
mance gains are highly dependent on the target architecture (FPGA, GPU, CPU) and the

specific implementation of the quantized kernels.

2.3.3.1 FPGA Implementations and Co-Design

Field-Programmable Gate Arrays (FPGAs) offer a unique platform for analyzing
quantization effects due to their reconfigurability. Research by Muller et al. (Muller et
al., 2024) on the co-design of “TinyLLM” demonstrates that programmable logic allows for
custom bit-width arithmetic that is not natively supported on standard CPUs/GPUs. The
analysis shows that by tailoring the hardware overlay to the specific quantization scheme
(e.g., non-standard bit widths), significant efficiency gains can be achieved.

Similarly, Chang (Chang, 2025) explores hardware-software co-design for PCle-based
FPGAs. The findings indicate that memory bandwidth is the primary bottleneck for LLM
inference. Quantization directly alleviates this by reducing the volume of data transfer
between host memory and the FPGA. The use of Coarse-Grained Systolic Arrays (CGSA)

in conjunction with quantization allows for high throughput. However, the analysis notes
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that the overhead of data marshaling and the complexity of the quantization/dequantization
units can offset these gains if not pipelined correctly.

Specifically, Sadr et al. (Sadr et al., 2025) analyze FPGA acceleration for Generative
Adversarial Networks (GANs), highlighting that transposed convolutions are computation-
ally intensive. The application of quantization here reduces the logic utilization (LUTs and
DSPs) required per operation, allowing for a higher degree of parallelism (more compute
units instantiated on the same chip). This confirms that quantization acts as a “parallelism

multiplier” on resource-constrained hardware.

2.3.83.2 CPU and Edge Architecture Performance

On general-purpose processors (ARM, RISC-V), the analysis by Martinez et
al. (Martinez et al., 2025) regarding Transformer decoders highlights the “latency-critical”
nature of inference. The study finds that while quantization reduces memory footprint, the
speedup is contingent on the availability of vectorized instructions (e.g., NEON, AVX) that
support the specific integer format.

For instance, if a CPU lacks native INT4 support, the quantized data must be
unpacked to INTS8 or FP32 before computation, introducing overhead. The results from
(Martinez et al., 2025) suggest that for RISC-V architectures, custom extensions are of-
ten necessary to fully exploit low-bit quantization. Without these extensions, the cost of
dequantization can dominate the inference time, negating the benefits of reduced memory
bandwidth.

Research on edge AT using platforms like NVIDIA Jetson Orin and Google Coral Edge
TPU (Dr.J.V.Anchitaalagammai et al., 2025) reinforces this finding. The analysis shows
that these devices uses specialized tensor processing units designed for INT8. The perfor-
mance gap between FP16 and INT8 on these devices is substantial because the hardware

is architected specifically for integer arithmetic. The study emphasizes that for real-time
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decision-making at the edge (e.g., in privacy-sensitive or bandwidth-constrained environ-

ments), quantization is not optional but a prerequisite for deployment.

2.3.83.8 Memory Bandwidth vs. Compute Bound Analysis

A recurring theme in the results is the distinction between memory-bound and
compute-bound regimes. LLM generation (decoding phase) is typically memory-bound
because it involves loading massive weight matrices for matrix-vector multiplication with a
small batch size (token-by-token generation).

The analysis of LLM.int8() (Dettmers et al., 2022) and GPTQ (Frantar et al., 2022)
confirms that the primary speedup from quantization in this regime comes from reduced
memory access, not necessarily faster computation. By reducing weights from 16-bit to 4-
bit, the memory bandwidth requirement is reduced by 75%. This allows the compute units
to be fed data at a rate closer to their utilization capacity.

Conversely, in the prefill phase (processing the prompt), the operation is matrix-
matrix multiplication, which is more compute-intensive. Here, the overhead of quantization
(e.g., dynamic scaling, outlier handling) becomes more visible. The analysis suggests that
optimal inference engines may need to switch strategies between the prefill and decode phases

to maximize performance.

2.3.4 Mixed-Precision and Hybrid Model Strategies

The analysis of the literature indicates that uniform quantization is rarely the optimal
strategy for complex, heterogeneous architectures. Recent works (Kim et al., 2024)(Kim et
al., 2025) demonstrate the necessity of mixed-precision approaches, where different layers
or components are quantized to different bit-widths based on their sensitivity or hardware

characteristics.
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2.3.4.1 Hybrid Network Architectures

Kim et al. (Kim et al., 2024) present “HyQ,” a framework for CNN-Transformer
hybrid networks. The analysis of hybrid models reveals a complex dependency structure.
CNN layers, typically used for feature extraction in vision tasks, exhibit different sensitivity
profiles compared to the Transformer layers used for global context modeling.

The results from Hy(Q suggest that a “hardware-friendly” quantization policy must
account for these structural differences. For instance, Transformer attention layers are often
more sensitive to quantization noise due to the softmax operation, which can amplify small
errors. The analysis in (Kim et al., 2024) demonstrates that applying distinct quantization
parameters to the CNN and Transformer blocks yields a better accuracy-efficiency trade-off

than global strategies.

2.3.4.2 Diffusion Transformers and Iterative Inference

The work by Kim et al. (Kim et al., 2025) on “MixDiT” extends this analysis to Dif-
fusion Transformers (DiTs). Image generation via diffusion is an iterative process, involving
multiple passes through the network. This multiplies the impact of quantization error; a
small error in step t can propagate and amplify through steps t + 1 to T.

The analysis of MixDiT uses mixed-precision MX quantization. The findings show
that not all timesteps in the diffusion process are equally sensitive. Early timesteps (high
noise) might be more strong to quantization than later timesteps (fine detail refinement).
Furthermore, within the DiT architecture, certain blocks contribute more to the visual fidelity
than others. By dynamically allocating bit-precision, MixDiT achieves acceleration while
maintaining generation quality, a result that uniform quantization fails to replicate.

Table 3 summarizes the findings regarding mixed-precision strategies.
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Strategy Application Domain  Key Finding Source

Layer-wise BERT / NLP Sensitive layers need  (Shen et al., 2020)
higher precision

Component-wise CNN-ViT Hybrids CNNs and ViTs (Kim et al., 2024)
require distinct
policies

Temporal Diffusion (DiT) Sensitivity varies (Kim et al., 2025)
across diffusion steps

Channel-wise LLMs Outlier channels (Dettmers et al.,

require FP16/Scaling  2022)

Table 3: Analysis of Mized-Precision Strategies in Literature.

This data indicates a move towards “granularity” in quantization. The analysis sug-
gests that the future of quantization lies in finer-grained control-moving from tensor-wise
to channel-wise, and potentially to group-wise or block-wise quantization, as seen in newer

formats like MX.

2.3.5 Energy Efficiency and Sustainability Implications

Beyond latency and accuracy, the literature extensively analyzes the energy implica-
tions of quantization. As noted by Dua and Patel (Dua & Patel, 2024), optimizing generative
Al workloads is critical for sustainability. The energy cost of Al is a function of both data

movement and arithmetic operations.

2.3.5.1 Reduction in Data Movement Energy

The analysis confirms that data movement is orders of magnitude more energy-

intensive than computation. Fetching a 32-bit float from DRAM requires significantly more
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picojoules (pJ) than performing a MAC operation. By compressing weights to 4-bit or 8-bit,
quantization directly attacks the dominant source of energy consumption.

Research on “Search-optimized quantization” (Bouaggad & Grabar, 2025) in the con-
text of biomedical ontology alignment highlights the constraints of edge devices. In these
environments, battery life is the limiting factor. The analysis shows that quantization en-

ables complex models to run within the thermal and power envelopes of mobile devices.

2.8.5.2 System-Level Energy Savings

However, the analysis also reveals nuances. If the quantization scheme requires com-
plex decoding logic (e.g., non-power-of-two bit-widths or complex Huffman coding), the
energy consumed by the logic gates for decoding can offset the savings from reduced mem-
ory access. The work on “Scalar Arithmetic Multiple Data” (Anderson et al., 2019) suggests
that customizable precision hardware can mitigate this by implementing efficient hardware
structures that natively understand variable precision, thereby minimizing the “tax” of flex-
ibility.

Furthermore, in the context of cell-free Integrated Sensing and Communication
(ISAC) systems, Zhu et al. (Zhu et al., 2025) analyze quantization in fronthaul links. Here,
quantization is applied to the signal transmission itself. The findings demonstrate that
allocating quantization bits based on channel conditions (similar to mixed-precision in
NNs) optimizes the trade-off between transmission energy and sensing accuracy. This
parallels the findings in neural network quantization, suggesting a universal principle of

“information-theoretic resource allocation.”

2.3.6 Algorithmic Innovations in Quantization Logic

The review of literature identifies several algorithmic innovations that facilitate the
results discussed above. The shift from static to dynamic quantization and the integration

of search-based methods mark significant analytical milestones.
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2.3.6.1 Search-Based and Learnable Quantization

Bouaggad and Grabar (Bouaggad & Grabar, 2025) discuss “Search-optimized quan-
tization.” This represents a departure from heuristic-based selection of quantization param-
eters (s, z) towards treating quantization configuration as a hyperparameter search problem.
The analysis suggests that for specific domains (like biomedical ontologies), the distribu-
tion of data is non-standard, and generic quantization policies fail. Automated search can

discover optimal bit-allocations that a human designer might miss.

2.8.6.2 Graph Neural Networks (GNNs)

Auten et al. (Auten et al., 2020) analyze hardware acceleration for Graph Neural
Networks. GNNs present unique challenges due to irregular memory access patterns (sparse
adjacency matrices). The analysis finds that quantization in GNNs is particularly effective
because it increases the effective cache capacity. Since GNNs are often memory-bandwidth
bound due to scatter-gather operations, fitting more of the graph structure into on-chip

memory (via compression) yields super-linear performance improvements.

2.3.7 Synthesis of Findings

The comprehensive analysis of the cited literature leads to several synthesizing con-
clusions regarding the state of quantization for integer-only hardware.

First, outliers are the primary antagonist. The work of (Czaké et al., 2025),
(Dettmers et al., 2022), and (Lin et al., 2023) conclusively demonstrates that activation
outliers in LLMs are the main barrier to low-precision inference. Methods that ignore these
outliers (standard RTN) fail, while methods that accommodate them (decomposition, scaling,
clipping) succeed.

Second, Hessian information is the gold standard for sensitivity. The theoret-

ical framework utilizing the Hessian matrix (Frantar et al., 2022)(Shen et al., 2020) provides
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the most accurate predictor of quantization error. This confirms the hypothesis that the
local curvature of the loss environment determines robustness.

Third, Hardware-software co-design is essential. The results from FPGA
(Muller et al., 2024)(Chang, 2025) and specialized edge hardware (Dr.J.V.Anchitaalagammai
et al., 2025) studies indicate that quantization algorithms cannot be designed in a vacuum.
The most efficient implementations are those where the bit-width and arithmetic scheme
match the underlying hardware capabilities (e.g., DSP slice width, vector lane size).

Fourth, Mixed-precision is the future norm. Whether across layers (Shen et al.,
2020), components (Kim et al., 2024), or timesteps (Kim et al., 2025), the analysis shows
that monolithic precision (e.g., “all INT8”) is becoming obsolete. The optimal frontier lies
in assigning precision proportional to information density.

Finally, the analysis of applications ranging from brain tumor segmentation (Kapo
et al., 2024) to fire detection (Dilshad et al., 2023) and news classification (Risnanto &
Poerwandono, 2025) demonstrates the universality of these techniques. While the specific
constraints vary (e.g., safety-critical accuracy in medical imaging vs. Real-time throughput
in surveillance), the fundamental principles of quantization—balancing noise against resource
usage-remain constant.

The mathematical formulation of the perturbation cost:

0L ~ AwTHAwW

serves as the unifying thread. Whether implicitly (through heuristic outlier protec-
tion) or explicitly (through Hessian-based solvers like GPTQ), all successful methods strive
to minimize this quadratic form. The results reviewed in this section validate that minimiz-
ing this proxy correlates strongly with preserving downstream task performance (perplexity,

accuracy, F1 score) while unlocking the efficiency of integer-only hardware.
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2.3.8 Analysis of Quantization in Specific Application Domains

The literature review extends beyond general architectural analysis to specific ap-
plication domains, providing evidence of how quantization impacts real-world tasks. The
analysis of these specific implementations reveals that the tolerance for quantization noise

is highly task-dependent.

2.3.8.1 Medical Imaging and Diagnosis

In the domain of medical imaging, Kapo et al. (Kapo et al., 2024) evaluate semantic
segmentation of brain tumors using DeepLabV3+ and UNet with Intel’s OpenVINO toolkit.
The analysis of these results highlights a critical safety constraint. While quantization (INTS)
provided significant speedups on edge hardware, the study necessitates a rigorous check on
segmentation accuracy (Dice coefficient).

The findings suggest that for segmentation tasks, the spatial precision of the output
map is sensitive to the quantization of the upsampling layers. Unlike classification, where
a small perturbation in the logit might not change the argmax class, segmentation requires
pixel-perfect accuracy. The analysis indicates that mixed-precision is particularly valuable
here: keeping the final decoding layers in higher precision (FP16) while quantizing the heavy

encoder backbone (INTS8) offers the best compromise.

2.3.8.2 Surveillance and Real-Time Detection

Dilshad et al. (Dilshad et al., 2023) present an efficient framework for fire detection
in surveillance environments. This application is characterized by the need for low latency
(rapid detection) and deployment on resource-constrained cameras. The analysis of their
results indicates that quantization is effective not just for model compression, but for reducing

the thermal footprint of the device.
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The study finds that lightweight models (often used in surveillance) can be more sen-
sitive to quantization than over-parameterized models. This counter-intuitive finding—that
“smaller models are harder to quantize”-aligns with the lottery ticket hypothesis. Larger
models have more redundant parameters that can absorb quantization noise, whereas com-
pact models operate closer to their information capacity limit. Therefore, the analysis sug-
gests that applying aggressive quantization to already-efficient architectures (like MobileNet
or efficient fire detection backbones) requires careful calibration (e.g., QAT or advanced

PTQ) to prevent accuracy collapse.

2.3.8.8 Natural Language Processing Applications

In the field of NLP, Risnanto and Poerwandono (Risnanto & Poerwandono, 2025)
analyze news topic classification for Indonesian text using ONNX Runtime. The results
demonstrate the practical utility of standard quantization runtimes. The analysis shows
that for classification tasks (unlike generation), the robustness to quantization is high. The
decision boundaries for topic classification are apparently wide enough that the quantization
noise Aw does not easily push samples across the boundary.

This contrasts with the findings in generative tasks (LLMs) discussed earlier
(Dettmers et al., 2022)(Frantar et al., 2022), where the output distribution (next-token
probability) is highly sensitive. =~ This comparative analysis suggests a hierarchy of
quantization difficulty: 1. Classification: Most strong (INTS is standard). 2. Segmen-
tation/Detection: Moderately sensitive (Spatial precision matters). 3. Generation

(LLMs/Diffusion): Highly sensitive (Outliers and error accumulation).

2.3.9 Theoretical Synthesis of Error Propagation

To deepen the analysis, it is necessary to consider the propagation of quantization

error through deep networks. The literature (Cai et al., 2022) discusses efficient methods for
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deep learning, touching upon how errors stack. In a deep network with L layers, the error
introduced at layer [, denoted as ¢;, propagates through subsequent layers { 4+ 1, ..., L.

If the network layers are Lipschitz continuous with constant K, the error bound at the
output can theoretically grow as K*7!||¢||. For Transformers, the LayerNorm and Softmax
operations impact this propagation. The analysis of outliers (Czaké et al., 2025) suggests
that these outliers effectively increase the local Lipschitz constant of the layer, making the
network more susceptible to noise amplification.

Methods like SmoothQuant (implied by the discussion of activation smoothing in
(Czaké et al., 2025)) and AWQ (Lin et al., 2023) work by effectively pre-conditioning the
network to reduce this sensitivity. By smoothing the activation magnitude, they lower the
“sharpness” of the function being quantized, thereby reducing the impact of the error ¢; on the
final output. This theoretical perspective explains why activation-aware methods outperform
weight-only methods: they modify the signal flow to be more strong to the specific type of

noise introduced by integer discretization.

2.3.9.1 The Role of Calibration Data

The performance of PTQ methods is heavily dependent on the calibration dataset
used to estimate statistics (scaling factors s, zero-points z, and Hessian H). The analysis
of GPTQ (Frantar et al., 2022) and AWQ (Lin et al., 2023) reveals that a small set of
calibration data (e.g., 128 samples) is sufficient to capture the statistical properties of the
activations.

However, the “representativeness” of this data is important. If the calibration set
does not contain the outliers that appear during inference, the quantization parameters will
be incorrect. The findings from (Dettmers et al., 2022) (LLM.int8()) emphasize that outliers
are systematic and emerge at scale, meaning they are likely present even in small samples of
real data. This consistency allows PT(Q methods to work reliably without needing the full

training set, which is a key result for the feasibility of quantizing massive private models.
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2.3.10 Summary of Analytical Outcomes

The analysis of the selected literature establishes a cohesive narrative regarding the
quantization of modern neural networks. The field has moved beyond the simple question
of “how to round numbers” to a complex optimization problem involving: 1. Spectral
Analysis: Using Hessians to identify sensitive weights (Frantar et al., 2022)(Shen et al.,
2020). 2. Distributional Analysis: Handling heavy-tailed outliers in activations (Czako et
al., 2025)(Dettmers et al., 2022)(Lin et al., 2023). 3. Architectural Awareness: Treating
Transformers, CNNs, and DiTs differently (Kim et al., 2024)(Kim et al., 2025). 4. Hardware
Alignment: Matching algorithms to FPGA /Edge constraints (Muller et al., 2024)(Chang,
2025)(Dr.J.V.Anchitaalagammai et al., 2025).

The results consistently show that with the right combination of these techniques,
integer-only inference (INTS8, INT4) is not just a compression technique, but a viable, high-
fidelity deployment strategy that enables the proliferation of Al into resource-constrained
environments. The significant gap between the memory capacity of edge devices and the
size of LLMs is effectively bridged by these advanced quantization methodologies, provided
the “outlier problem” is rigorously addressed.

The next section will discuss the broader implications of these technical findings,

placing them in the context of the operational requirements for real-world Al deployment.

2.4 Discussion

The synthesis of results presented in section 2.3, when viewed through the theoret-
ical lens established in section 2.1, indicates a fundamental major change in the field of
neural network compression. While early quantization frameworks focused primarily on
weight rounding strategies to minimize storage, the current body of literature (Czaké et

al., 2025)(Dettmers et al., 2022)(Lin et al., 2023) suggests that the primary bottleneck for
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deploying Large Language Models (LLMs) on integer-only hardware is not the precision of
the weights, but the statistical behavior of the activations.

This section interprets these findings, comparing the empirical realities of modern
quantization algorithms against the theoretical frameworks introduced earlier. It addresses
the disconnect between theoretical compression rates and realized hardware speedups, ana-
lyzes the implications of activation outliers for hardware design, and evaluates the operational

feasibility of deploying these quantized models in resource-constrained environments.

2.4.1 The Shift from Weight-Centric to Activation-Centric Quanti-

zation

As discussed in section 2.1, the traditional mathematical formulation of quantization
relied on a uniform affine mapping, expressed as ¢ = round(r/S+ Z). This theoretical model
assumes that the underlying data distribution r is relatively uniform or Gaussian, allowing
a single scaling factor S to effectively map the dynamic range to integers. However, the
analysis of recent literature in section 2.3 reveals that this assumption fundamentally breaks

down in the context of modern LLMs (e.g., Llama, OPT, GPT).

The “Outlier” Phenomenon as a Deterministic Constraint

The important finding synthesized from the literature is that activation outliers are
not random noise but systematic features of large-scale models. Research by Dettmers
et al. (Dettmers et al., 2022) on LLM.int8() demonstrates that as model scale increases
(typically beyond 6.7B parameters), outlier features emerge in specific dimensions of the
hidden states. These outliers are “heavy-tailed,” with magnitudes significantly larger than
the bulk of the data.

This empirical reality contradicts the simpler quantization models reviewed in section
2.1. If a single scaling factor S is determined based on the maximum absolute value of the

activation tensor (to accommodate the outlier), the resolution for the remaining 99% of the
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values—which cluster near zero—is effectively destroyed. This phenomenon explains the severe
degradation in perplexity observed in naive INT8 quantization approaches.
The literature offers two distinct divergent solutions to this problem, as summarized

in Table 1 below.

Hardware

Approach Mechanism Key Literature Implication

Decomposition Separates outliers LLM.int8() High latency due to
(FP16) from bulk (Dettmers et al., mixed-precision
(INTS8) 2022) kernels

Smoothing Migrates AWQ (Lin et al., Efficient inference;
quantization 2023) offline complexity
difficulty from
activations to weights

Hessian Opt. Uses second-order GPTQ (Frantar et Computationally
info to protect al., 2022), Q-BERT expensive calibration
sensitive weights (Shen et al., 2020)

Hybrid Layer-specific policies HyQ (Kim et al., Requires specialized
for different 2024), MixDiT (Kim  compiler support
architectures et al., 2025)

Table 1: Comparison of outlier mitigation strategies in modern quantization frame-
works. Source: Adapted from (Dettmers et al., 2022), (Lin et al., 2023), and (Frantar et al.,
2022).

The “Activation-aware Weight Quantization” (AWQ) method (Lin et al., 2023) repre-
sents a significant theoretical advancement over the methods discussed in section 2.1. Rather
than treating weights and activations as independent quantization problems, AWQ recognizes
that the quantization error of weights should be weighted by the magnitude of the activa-

tions they multiply. By scaling up the weights associated with salient activation channels
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(and scaling down the activations correspondingly to preserve the mathematical equivalence),
the quantization noise is effectively pushed into the weights, which are static and easier to
handle.

This finding validates the hypothesis that “representativeness” of calibration data,
discussed in section 2.3, is less about capturing the exact distribution of user data and
more about identifying these structural outliers. Since outliers are systematic (Dettmers et
al., 2022), a small calibration set (e.g., 128 samples) is sufficient to compute the necessary

scaling factors, provided the set triggers these emergent features.

Theoretical Implications for the Optimization Objective

The findings from section 2.3 suggest that the optimization objective for quantization
has evolved. Section 2.1 introduced the minimization of the Frobenius norm of the weight

error:

min W — QW)

However, the efficacy of methods like GPTQ (Frantar et al., 2022) and Q-BERT (Shen
et al., 2020) indicates that this objective is insufficient. The literature demonstrates that a
more accurate objective must account for the curvature of the loss environment, typically

approximated by the Hessian H. The refined objective becomes:

mén(W —QW)TH(W —Q(W))

This shift acknowledges that not all weights are created equal; weights corresponding
to high-curvature directions in the loss environment (often correlated with activation outliers)

require higher precision or careful rounding to maintain model fidelity.
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2.4.2 The Hardware-Software Gap: Theoretical vs. Realized Gains

A significant research gap identified in section 2.1 was the discrepancy between the-
oretical compression rates (e.g., 4x reduction from FP32 to INT8) and actual wall-clock
speedups. The discussion of results in section 2.3, particularly regarding hardware-specific
implementations (Muller et al., 2024)(Chang, 2025)(Martinez et al., 2025), clarifies the na-

ture of this gap.

The Memory Bandwidth vs. Compute Bound Trade-off

While quantization effectively addresses the memory capacity bottleneck—
allowing, for instance, a 7B parameter model to fit on a consumer GPU or Edge
TPU (Dr.J.V.Anchitaalagammai et al., 2025)-it introduces computational overhead that
can negate latency gains.

Research on FPGA co-design (Muller et al., 2024)(Chang, 2025) highlights that the
non-uniform quantization schemes required to handle outliers (such as the sparse decom-
position in LLM.int8()) create irregular memory access patterns. Standard systolic arrays,
designed for dense matrix multiplications, struggle with these irregularities. As noted by
Wang et al. (Wang et al., 2025), conventional GPGPUs face challenges in resource utiliza-
tion with irregular matrices.

Furthermore, the “packing” and “unpacking” of sub-byte integers (e.g., INT4) often
requires runtime overhead. Unless the hardware supports native INT4 instructions, the
processor must spend cycles unpacking data into INT8 or FP16 registers for computation.
This aligns with the findings of Martinez et al. (Martinez et al., 2025), who observed that
on ARM and RISC-V CPUs, the theoretical throughput gains of quantization are often
bottlenecked by the instruction set architecture’s lack of support for low-precision vector

operations.
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Implications for Edge Al and FPGA Implementations

The literature indicates that Field-Programmable Gate Arrays (FPGAs) offer a po-
tential solution to this hardware misalignment. Unlike fixed-architecture GPUs, FPGAs can
be reconfigured to implement custom bit-width arithmetic, such as the “Scalar Arithmetic
Multiple Data” approach described by Anderson et al. (Anderson et al., 2019). This al-
lows for the implementation of the precise quantization schemes developed in the theoretical
literature without the “packing penalty” incurred on general-purpose processors.

Recent work on the “TinyLLM” co-design (Muller et al., 2024) and hardware-software
co-design for PCle-based FPGAs (Chang, 2025) demonstrates that when the hardware logic
is tailored to the specific quantization outlier patterns, the theoretical efficiency gains can
be fully realized. This supports the argument that future progress in this field requires a
comprehensive “co-design” approach (Dua & Patel, 2024), rather than treating quantization

algorithm development and hardware accelerator design as separate disciplines.

2.4.3 Architectural Nuances: Beyond Standard Transformers

The results analyzed in section 2.3 extend beyond standard text-based LLMs to in-
clude hybrid and generative architectures, addressing the need for domain-specific quantiza-

tion strategies.

Hybrid Architectures (CNN-Transformer)

As discussed in section 2.1, different neural network layers exhibit different sensitiv-
ities to quantization noise. The findings regarding HyQ (Kim et al., 2024) reinforce this,
showing that in hybrid CNN-Transformer models (often used in vision tasks), the convolu-
tional layers and self-attention layers require distinct quantization policies. Convolutional

layers, which typically process local features, are often more strong to aggressive quantiza-
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tion than the global attention mechanisms in Transformers. This suggests that a monolithic

quantization strategy (e.g., “quantize everything to INT8”) is suboptimal.

Generative and Diffusion Models

The analysis of MixDiT (Kim et al., 2025) and FPGA-accelerated DCGANs (Sadr et
al., 2025) highlights unique challenges in generative models. Unlike discriminative models
(classification), where the output is a probability distribution, generative models output
high-dimensional data (images, text) where subtle quantization artifacts can cascade into
significant quality degradation.

The literature suggests that “Mixed-Precision MX Quantization” (Kim et al., 2025)
is essential for these architectures. This involves keeping sensitive layers (such as the initial
embedding or final projection layers) in higher precision (FP16) while aggressively quantizing
the heavy compute layers (MLP blocks) to INT8 or INT4. This aligns with the “sensitivity
analysis” approach advocated in Q-BERT (Shen et al., 2020), where Hessian-based metrics

determine the bit-width of each layer.

2.4.4 Operational Implications for Resource-Constrained Environ-

ments

The ultimate goal of quantization, as framed in the introduction (section 1) and
literature review (section 2.1), is to enable “Edge AI”—the deployment of sophisticated models
on devices with limited power and thermal budgets. The findings synthesized in section
2.3 provide strong evidence that this is becoming operationally feasible, provided specific

constraints are met.

Privacy and Latency in Critical Applications

The deployment of quantized models on edge devices like the NVIDIA Jetson Orin or

Google Coral Edge TPU (Dr.J.V.Anchitaalagammai et al., 2025) has profound implications

62



for privacy. In medical applications, such as the semantic segmentation of brain tumors
discussed by Kapo et al. (Kapo et al., 2024), transferring patient data to the cloud for infer-
ence is often prohibited by privacy regulations. Quantization enables these high-performance
segmentation models (e.g., DeepLabV34, UNet) to run locally on the medical device.
Similarly, in telecommunications and 6G networks (Dr.J.V.Anchitaalagammai et al.,
2025)(Zhu et al., 2025), the latency requirements for real-time decision-making preclude
cloud offloading. The literature (Zhu et al., 2025) discusses “fronthaul quantization,” opti-
mizing the bit-allocation not just for model weights, but for the data transmission itself in
cell-free systems. This illustrates that quantization principles are transferable from model

compression to bandwidth compression.

Energy Efficiency and Sustainability

The energy footprint of Al is a growing concern. The literature regarding hard-
ware optimization for generative Al (Dua & Patel, 2024) and search-optimized quantization
(Bouaggad & Grabar, 2025) emphasizes that reducing precision correlates linearly (or some-
times quadratically) with energy savings. An INT8 MAC (Multiply-Accumulate) operation
consumes significantly less energy than an FP32 MAC. For battery-powered devices, this
efficiency is the difference between a viable product and a theoretical prototype.

Table 2 summarizes the operational implications derived from the cited literature.

Domain Key Requirement Role of Quantization  Reference

Healthcare Data Privacy Enables on-device (Kapo et al., 2024)
segmentation (no
cloud)

Telecom (6G) Ultra-low Latency Reduces fronthaul (Zhu et al., 2025)

bandwidth load
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Domain Key Requirement Role of Quantization  Reference

Surveillance Real-time Processing  Fits fire detection (Dilshad et al., 2023)

models on edge

cameras
Mobile NLP Storage Constraints  Allows multi-label (Risnanto &
classification on Poerwandono, 2025)
phones
Ontology Computational Cost ~ Reduces search space (Bouaggad & Grabar,
for alignment 2025)

Table 2: Operational impact of quantization across diverse application domains.

Source: Synthesized from cited works.

2.4.5 Limitations and Future Directions

While the literature presents a cohesive narrative of progress, several limitations and

unresolved challenges remain.

The Calibration Dependency

Despite the finding that outliers are systematic (Dettmers et al., 2022), current Post-
Training Quantization (PTQ) methods still rely on a “calibration set” to estimate statistical
parameters. If the target domain differs significantly from the calibration data (distributional
shift), the quantization parameters (S and Z) may be suboptimal. While approaches like
ExNAS (RODRIGUEZ, 2025) propose “experiential” architectures that adapt, the static

nature of most quantization schemes remains a limitation for dynamic environments.
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Hardware Fragmentation

A recurring theme in the discussion of hardware (Chang, 2025)(Akita et al.,
2025)(Martinez et al., 2025) is fragmentation. There is no standard format for “INT4”
or “INT3” across devices. NVIDIA’s Tensor Cores, ARM’s NEON/SVE, and Xilinx’s
DPU all implement low-precision arithmetic differently. This forces researchers to op-
timize for specific hardware targets (as seen in the specific focus on Jetson/Coral in
(Dr.J.V.Anchitaalagammai et al., 2025) or specific FPGAs in (Sadr et al., 2025)), hindering

the “write once, deploy anywhere” ideal.

Evaluation Metrics

Finally, there is a tension in the literature regarding evaluation. Most studies uses
perplexity (for LLMs) or mloU (for segmentation (Kapo et al., 2024)) as the primary metric.
However, as noted in the analysis of biomedical ontology alignment (Bouaggad & Grabar,
2025), task-specific metrics are important. A quantized model might maintain low perplexity
but fail in subtle reasoning tasks or generate hallucinations at a higher rate than the full-

precision model-a phenomenon that requires further longitudinal study.

2.4.6 Synthesis

In conclusion, the discussion of the literature indicates that the field of LLM quan-
tization has matured from a simple data compression problem into a complex optimization
challenge involving statistical analysis of activation outliers, Hessian-based sensitivity anal-
ysis, and hardware-software co-design.

The theoretical framework established in section 2.1 provides the necessary math-
ematical foundation, but the empirical results discussed in section 2.3 demonstrate that
real-world implementation requires deviations from the ideal affine mapping. Specifically,

the “outlier problem” identified by Dettmers et al. (Dettmers et al., 2022) and addressed by
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Lin et al. (Lin et al., 2023) serves as the fulcrum upon which modern quantization strategies
balance.

The successful bridging of the gap between massive model sizes and edge device
constraints—validated by successful deployments in medical (Kapo et al., 2024) and industrial
(Dilshad et al., 2023) contexts—confirms that integer-only inference is a viable path forward.
However, the future of this field lies not just in better rounding algorithms, but in the
“co-design” (Muller et al., 2024)(Dua & Patel, 2024) of neural architectures and hardware

accelerators that treat low-precision, outlier-heavy computation as a first-class citizen.
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3. Conclusion

The comprehensive examination of large language model (LLM) quantization for
integer-only hardware reveals a critical inflection point in the trajectory of artificial intel-
ligence deployment. This thesis has explored the widening chasm between the exponential
growth of model parameters—exemplified by architectures such as Llama and OPT-and the
physical constraints of deployment hardware. The research presented confirms that quan-
tization is not merely an optional optimization technique but a fundamental requisite for
the democratization of advanced Al. By systematically analyzing the transition from high-
precision floating-point arithmetic (FP32, FP16) to low-precision integer formats (INTS,
INT4), this study demonstrates that near-lossless performance is achievable through sophis-
ticated post-training quantization (PTQ) methodologies, provided that activation outliers

and hardware-specific constraints are rigorously addressed.

3.1 Synthesis of Methodological Findings

The investigation into theoretical frameworks and algorithmic innovations highlights
that the primary challenge in quantization is no longer the weight distribution alone, but

the complex interplay between weights and activations.

3.1.1 The FEvolution of Post-Training Quantization

The literature consistently demonstrates that traditional uniform quantization meth-
ods fail to preserve the representational capacity of modern LLMs due to the emergence of
extreme outliers in activation channels. As detailed in recent systematic reviews, address-
ing these activation outliers is essential for maintaining model fidelity (Czaké et al., 2025).
The analysis confirms that advanced PTQ techniques, such as GPTQ (Frantar et al., 2022)

and LLM.int8() (Dettmers et al., 2022), successfully mitigate quantization error by treating
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salient weights and outliers with higher precision or specific correction mechanisms while
compressing the vast majority of parameters into 8-bit or 4-bit integers.

Specifically, the effectiveness of activation-aware weight quantization (AW(Q) under-
scores the necessity of protecting the most critical 1% of parameters to preserve the perfor-
mance of the remaining 99% (Lin et al., 2023). This finding represents a major change from
“model-agnostic” quantization to “sensitivity-aware” approaches. The evidence suggests that
preserving the accuracy of generative models does not require high precision everywhere, but
rather high precision where it matters. This aligns with findings regarding the quantization
of Transformer-based architectures like BERT, where Hessian-based approaches have been

utilized to identify and protect sensitive layers (Shen et al., 2020).

3.1.2 Hardware-Software Co-Design

A recurring theme throughout this research is the inextricable link between algorith-
mic compression and hardware architecture. Algorithms cannot be designed in a vacuum;
their efficacy is determined by the underlying silicon. The analysis of hardware-friendly
quantization methods, such as HyQ for hybrid networks, illustrates that optimization must
account for the specific instruction sets and memory hierarchies of the target device (Kim et
al., 2024).

Table 3.1 summarizes the key relationships between quantization algorithms and their

corresponding hardware implications as identified in the reviewed literature.

Quantization Approach  Key Algorithmic Mechanism  Hardware Implication Source

Vector-wise PTQ Row/Column independent Requires specialized (Frantar
scaling kernels for reduction et al.,
2022)
Mixed-Precision Outlier separation (FP16) +  Dual-path execution (Dettmers
(LLM.int) INT8 units required et al.,
2022)
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Quantization Approach  Key Algorithmic Mechanism  Hardware Implication Source

Activation-Aware Salient weight scaling Standard INT (Lin et
(AWQ) arithmetic al.,
compatibility 2023)
Hessian-Based Sensitivity-based bit Complex offline (Shen et
allocation calibration al.,
2020)
Hardware-Aware (HyQ) Layer-specific quantization Optimized for (Kim et
policies NPU/DSP constraints  al.,
2024)

Table 3.1: Synthesis of Quantization Approaches and Hardware Dependencies.

The distinction between theoretical compression rates and actual inference accelera-
tion is important. While vector-wise quantization offers superior perplexity scores, it imposes
overhead on hardware that lacks native support for granular scaling factors. Conversely,
methods like AWQ demonstrate superior practical deployment potential by maintaining
compatibility with standard integer arithmetic units found in commodity hardware (Lin et

al., 2023).

3.2 Implications for Hardware Architecture

The shift toward integer-only inference has profound implications for the design of
next-generation processors, particularly in edge computing environments where power and

thermal budgets are strictly capped.

3.2.1 The Rise of Edge Al and Custom Silicon

The research highlights a migration of intelligence from centralized data centers to

the edge. This transition is enabled by hardware architectures specifically optimized for low-
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precision arithmetic. Recent advancements in FPGA technology demonstrate the viability of
hardware-software co-design for running LLMs on programmable logic (Muller et al., 2024).
By utilizing PCle-based FPGA accelerators with coarse-grained systolic arrays, researchers
have achieved significant efficiency gains over general-purpose GPUs for specific inference
workloads (Chang, 2025).

Furthermore, the implementation of configurable systolic arrays for GPGPUs ad-
dresses the resource utilization challenges inherent in processing the irregular matrices of-
ten produced by sparse quantization methods (Wang et al., 2025). This suggests a future
where hardware is increasingly specialized; generic compute units are being supplemented
or replaced by tensor-optimized cores capable of executing massive INT8 and INT4 matrix

multiplications with high energy efficiency.

3.2.2 RISC-V and ARM Integration

The democratization of LLMs is further supported by optimizations for ubiquitous
processor architectures. The ability to run latency-critical quantized inference on ARM and
RISC-V CPUs expands the reach of generative Al to billions of mobile and IoT devices
(Martinez et al., 2025). This capability is essential for applications requiring privacy and
offline functionality, such as medical diagnostics or real-time translation, where transmitting
data to a cloud server is impractical or insecure. The integration of efficient deep learning
frameworks on these architectures allows for complex tasks, such as fire detection in surveil-
lance environments (Dilshad et al., 2023) or brain tumor segmentation (Kapo et al., 2024),

to be performed locally with reduced latency.

3.3 Broader Impacts and Applications

The technical achievements in quantization translate directly into tangible benefits
across various domains. The reduction in memory footprint—often by 50% or more-allows

models that previously required server-grade hardware to run on consumer devices.
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3.8.1 Democratization of Advanced NLP

The ability to quantize models like Llama for improved efficiency (Madhanegha et al.,
2025) lowers the barrier to entry for researchers and developers. This democratization fosters
innovation in language-specific applications, such as the classification of news topics in under-
represented languages like Indonesian (Risnanto & Poerwandono, 2025). By reducing the
hardware requirements, quantization enables the deployment of sophisticated NLP models

in regions or institutions with limited access to high-performance computing clusters.

3.8.2 Medical and Scientific Advancements

In the medical field, the reliability of quantized models is of essential importance.
The literature indicates that with careful calibration, quantized networks can maintain high
performance in sensitive tasks like semantic segmentation of medical imagery (Kapo et al.,
2024). Furthermore, search-optimized quantization techniques are enabling more efficient
alignment of biomedical ontologies, facilitating better data interoperability in healthcare
systems (Bouaggad & Grabar, 2025). These applications demonstrate that integer-only in-
ference is strong enough for critical decision-making processes, provided that the quantization

scheme is rigorously validated.

3.83.8 Sustainability and Energy Efficiency

Beyond performance, quantization addresses the growing concern regarding the envi-
ronmental impact of AI. Hardware optimization for generative Al is critical for sustainability
(Dua & Patel, 2024). By reducing the precision of operations, the energy cost per inference
drops significantly. This is vital for “always-on” systems and large-scale deployments where
the cumulative energy consumption of billions of inferences becomes a substantial ecologi-
cal burden. The use of platforms like NVIDIA Jetson Orin and Google Coral Edge TPU
highlights the industry’s focus on maximizing performance per watt through low-precision

computing (Dr.J.V.Anchitaalagammai et al., 2025).
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3.4 Limitations and Challenges

Despite the significant progress detailed in this thesis, several limitations remain that

prevent the universal adoption of integer-only quantization for all LLM workloads.

3.4.1 The Accuracy-Efficiency Trade-off

While 8-bit quantization is largely considered “solved” for many architectures, push-
ing the limits to 4-bit or 2-bit precision often results in non-negligible degradation of model
performance. As noted in the analysis of GPTQ, while accuracy remains high for standard
benchmarks, the “outlier problem” persists as a barrier to ultra-low precision (Frantar et
al., 2022). There is a fundamental information theoretic limit to how much a model can
be compressed before its reasoning capabilities—particularly in complex, multi-step tasks—are

compromised.

3.4.2 Hardware Fragmentation

The diversity of hardware accelerators presents a challenge for standardization. A
quantization scheme optimized for a specific FPGA implementation (Sadr et al., 2025) may
not translate effectively to a RISC-V CPU (Martinez et al., 2025) or a custom systolic array
(Wang et al., 2025). This fragmentation forces developers to maintain multiple quantized
versions of the same model or rely on complex compilation stacks to map abstract model

definitions to specific hardware backends.

3.4.8 Complexity of Calibration

Post-training quantization often requires a calibration dataset to determine optimal
scaling factors. The representativeness of this calibration data is important; if the data
distribution shifts during deployment, the static integer ranges defined during quantization

may lead to overflow or underflow, degrading performance. This is particularly challeng-
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ing for dynamic cross-layer memory systems designed for real-time inference optimization

(RODRIGUEZ, 2025), where the model must adapt to varying input contexts.

3.5 Future Directions

The field of LLM quantization is evolving rapidly. Based on the trajectories identified

in the literature, several key areas for future research and development are evident.

3.5.1 Advancements in Mized-Precision Architectures

The future of efficient inference likely lies not in uniform integer formats, but in
dynamic mixed-precision approaches. Techniques that can accelerate image diffusion trans-
formers via mixed-precision MX quantization (Kim et al., 2025) suggest a path forward
where different layers or even different attention heads uses varying bit-widths based on
their real-time sensitivity. Hardware that supports flexible precision, such as scalar arith-
metic multiple data architectures (Anderson et al., 2019), will be instrumental in realizing

this vision.

3.5.2 Integration of Sensing and Communication

As ATl models move to the edge, they are increasingly integrated into complex systems
that combine sensing, communication, and computation. Research into cell-free integrated
sensing and communication (ISAC) systems highlights the need for fronthaul quantization
bits allocation (Zhu et al., 2025). Future quantization strategies must consider the entire
pipeline—from the sensor data acquisition to the final model output—optimizing bandwidth

and compute simultaneously.

3.5.8 Automated Quantization Pipelines

To address hardware fragmentation, automated tools that can profile a model and the

target hardware to select the optimal quantization strategy will become standard. Concepts
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like “Experiential Neural Architecture Selection” (ExNAS) (RODRIGUEZ, 2025) point to-
ward systems that can dynamically adjust their structure and precision. Similarly, the
continued development of efficient methods for deep learning (Cai et al., 2022) will likely
yield “push-button” solutions that abstract the complexities of quantization from the model

developer.

3.6 Final Remarks

This thesis concludes that the quantization of Large Language Models for integer-only
hardware represents a mature yet evolving discipline that has successfully bridged the gap
between theoretical capability and practical deployability. The transition from floating-point
to integer arithmetic is not a compromise but an evolution, enabled by rigorous mathematical
frameworks and innovative hardware designs.

The evidence synthesized from the literature confirms that techniques like GPTQ),
AWQ), and hardware-software co-design have effectively solved the primary hurdles of 8-bit
deployment and are making significant strides in 4-bit inference. As hardware architectures
continue to specialize for low-precision operations—evident in the latest solid-state circuit
developments (Akita et al., 2025) and graph neural network accelerators (Auten et al., 2020)—
the reliance on heavy, energy-inefficient floating-point hardware will diminish for inference
tasks.

Ultimately, the successful implementation of integer-only LLMs fulfills the promise of
ubiquitous Al. By reducing the computational, memory, and energy barriers, quantization
empowers a future where advanced intelligence is embedded in the fabric of daily technology,
from life-saving medical devices to efficient global communication networks. The path for-
ward involves a continued synergy between algorithmic researchers and hardware architects,
ensuring that as models grow in intelligence, they remain grounded in the physical realities

of efficient computing.
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4. Appendices

A.1 Mathematical Foundations of Integer Mapping

The transition from floating-point representation to integer-only arithmetic necessi-
tates a rigorous mathematical framework to ensure signal fidelity. As established in the main
body, the fundamental operation involves mapping a real-valued tensor X, to an integer
tensor X . This appendix details the specific mechanisms of affine quantization, symmet-
ric versus asymmetric mapping, and granularity strategies that define modern post-training

quantization (PTQ) approaches.

A.1.1 Affine Quantization Schemes

The standard affine quantization scheme, often referred to as uniform quantization,
is defined by two primary parameters: the scaling factor (S) and the zero-point (Z). These
parameters determine how the dynamic range of the floating-point values is compressed into
the discrete integer domain.

The quantization function Q(x) and dequantization function D(z,) are formally ex-
pressed as:

T

Za in )
S—| + qmzn qmax

Q(z) = clamp (L

D(z,) = S(z,— Z)

Here, |-] denotes the rounding-to-nearest operation. The clamping function restricts
the values to the representable range of the target bit-width b, where typically g,,,;,, = —2°~*

and q,,,, = 2°~1 — 1 for signed integers.
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Scheme  Definition of Scale (5) Definition of Zero-Point (Z) Primary Use Case

SymmetricS = max(mg;”a'jxm“‘) Z =0 (Fixed) Weight
Quantization

Asymmetris = % Z = [Qin — =] Activation
Quantization

Logarithm# = 2% (Power of 2) Z=0 Hardware
Efficiency

Table A.1: Comparison of quantization mapping schemes. Source: Adapted from
synthesis of (Cai et al., 2022) and (Martinez et al., 2025).

Symmetric quantization is generally preferred for weights because the distribution of
weights in neural networks, including Transformers, tends to be Gaussian-like and centered
around zero. Enforcing Z = 0 reduces the computational overhead during matrix multi-
plication, as the cross-terms involving the zero-point vanish. This efficiency is critical for
hardware accelerators utilizing systolic arrays, as discussed by Wang et al. (Wang et al.,
2025) and Chang (Chang, 2025).

Conversely, activations often exhibit skewed distributions, particularly after ReLU or
GeLU functions where values are non-negative. In such cases, asymmetric quantization is
necessary to fully uses the available bit depth. However, this introduces additional compu-
tational complexity during inference, as the zero-point must be calculated and subtracted

during the accumulation phase.

A.1.2 Granularity of Quantization Parameters

A critical factor in preserving the accuracy of Large Language Models (LLMs) is the
granularity at which the scaling factors S and zero-points Z are calculated. The choice of

granularity represents a trade-off between memory compression and model accuracy.

76



Tensor-wise Quantization: This approach calculates a single S and Z for the
entire tensor. While this offers the maximum compression ratio, it is often insufficient for
LLMs due to the high dynamic range variance across different channels or tokens.

Channel-wise Quantization: Commonly applied to weights, this method assigns
a distinct scale factor to each output channel of a weight matrix. This accommodates the
varying magnitudes of filters within the network.

Token-wise and Group-wise Quantization: For activations in Transformers, out-
liers often appear in specific tokens or feature dimensions. Dettmers et al. (Dettmers et al.,
2022) demonstrated that outlier features in LLMs (e.g., GPT-3, OPT) are systematic and
can be handled by vector-wise quantization or mixed-precision decomposition. Similarly,
group-wise quantization divides tensors into smaller blocks (e.g., 128 elements) to localize

the scaling parameters, reducing the impact of outliers on the global distribution.

A.2 Advanced Optimization Objectives

Beyond simple rounding, advanced PTQ methods uses optimization algorithms to

minimize the information loss incurred by quantization.

A.2.1 Hessian-Based Optimization

Simple rounding to the nearest integer is not always optimal for minimizing the task
loss. Methods like GPTQ (Frantar et al., 2022) and Q-BERT (Shen et al., 2020) uses second-
order information from the Hessian matrix (or its approximation) to determine the optimal
quantized weights. The objective function seeks to minimize the squared error between the
output of the full-precision layer (W X) and the quantized layer (WX ), weighted by the

Hessian H:

min |[WX — WX||2 ~ min(@® — w)TH (& — w)
w w
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This approach acknowledges that not all weights contribute equally to the output
error. Weights corresponding to high-curvature directions in the loss environment (large

eigenvalues in the Hessian) must be quantized more carefully than those in flat regions.

A.2.2 Activation-Aware Scaling

Recent developments, such as AWQ (Lin et al., 2023), shift the focus from minimizing
weight error to preserving activation distribution. The core insight is that the quantization er-
ror of weights should be weighted by the magnitude of the activations they multiply. By pro-
tecting “salient” weights—those corresponding to large activation magnitudes—performance

can be significantly retained without requiring gradient updates or retraining.

Appendix B: Supplementary Data Tables and Hardware

Specifications

B.1 Theoretical Resource Requirements for LLM Inference

The deployment of LLMs on edge devices is fundamentally constrained by memory
bandwidth and capacity. The following tables provide a theoretical analysis of resource re-
quirements for common open-source LLM architectures when subjected to different quantiza-
tion precisions. These calculations are derived from the architectural specifications discussed

in (Frantar et al., 2022) and (Madhanegha et al., 2025).

Model Class Parameters Precision Model Size (GB) Min. Bandwidth for 20 tok/s
Llama-7B 7 Billion FP16 (16-bit) ~14.0 GB 280 GB/s

Llama-7B 7 Billion INTS (8-bit) ~7.0 GB 140 GB/s

Llama-7B 7 Billion INT4 (4-bit) ~3.5 GB 70 GB/s

Llama-13B 13 Billion =~ FP16 (16-bit) ~26.0 GB 520 GB/s
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Model Class Parameters Precision Model Size (GB) Min. Bandwidth for 20 tok/s

Llama-13B 13 Billion  INT4 (4-bit) ~6.5 GB 130 GB/s

Table B.1: Theoretical memory footprint and bandwidth requirements. “Model Size”
includes parameters only; actual runtime memory requires additional buffer for KV-cache
and activations.

As illustrated in Table B.1, 4-bit quantization (INT4) is a critical enabler for de-
ploying 7B and 13B parameter models on consumer-grade or edge hardware. For instance, a
Llama-7B model in FP16 requires approximately 14 GB of VRAM, exceeding the capacity of
many standard GPUs and almost all embedded devices. In contrast, the INT4 representation
reduces this to 3.5 GB, fitting comfortably within the memory constraints of devices like the
NVIDIA Jetson Orin or high-end mobile SoCs (Dr.J.V.Anchitaalagammai et al., 2025). The
bandwidth requirement column highlights the “memory wall” problem: to achieve a conver-
sational token generation rate (e.g., 20 tokens/second), the memory bandwidth requirements

scale linearly with bit precision.

B.2 Hardware Accelerator Specifications for Edge Al

To contextualize the feasibility of integer-only inference, it is necessary to examine
the specifications of current hardware accelerators targeted for edge deployment. The shift
toward Edge Al (Dr.J.V.Anchitaalagammai et al., 2025) relies on these platforms supporting
low-precision arithmetic (INT8/INT4).

Platform Architecture  AI Performance (TOPS) Precision Support Power
NVIDIA Jetson Orin Ampere GPU  Up to 275 FP16, INTS 15-60W
Google Coral TPU ASIC 4 INTS (Fixed) 2W
Xilinx Versal Al FPGA/ACAP Scalable INTS8, INT4, Custom Varied
ARM Cortex-A (NPU) CPU/NPU 10-50 INTS, BF16 <5W
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Table B.2: Comparative specifications of Edge Al hardware accelerators. Source:
Compiled from (Dr.J.V.Anchitaalagammai et al., 2025), (Sadr et al., 2025), and (Martinez
et al., 2025).

Table B.2 highlights the hardware diversity in the edge system. While GPU-based
solutions like the Jetson Orin offer flexibility with mixed precision (FP16/INTS), dedicated
ASICs like the Google Coral TPU are strictly limited to INT8 operations. This rigid con-
straint necessitates strong quantization strategies that do not rely on runtime floating-point
scalars. Furthermore, FPGA solutions (Muller et al., 2024)(Chang, 2025) offer the unique
capability to implement custom bit-widths (e.g., INT3 or INT2) or non-standard formats,
allowing for co-design of the hardware and the quantized model. The support for INT4 is
becoming increasingly standard in newer NPU architectures, driven by the specific needs of

Generative Al workloads (Dua & Patel, 2024).

B.3 Comparison of Post-Training Quantization Methodologies

The following table synthesizes the key characteristics of prominent PTQ algorithms

discussed in the literature review.

Method  Target Precision Outlier Handling Calibration Cost Reference

LLM.int8()INTS

GPTQ  INT4/3

AWQ INT4/3

Q- Mixed
BERT

Mixed-precision
decomposition
Hessian-based error
min.
Activation-aware
scaling

Hessian spectrum

analysis
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Low
(Inference-time)
Moderate
(One-shot)

Low (Search-based)

High (Group-wise)

(Dettmers et
al., 2022)
(Frantar et
al., 2022)
(Lin et al.,
2023)

(Shen et al.,

2020)



Method  Target Precision Outlier Handling Calibration Cost Reference

SmoothQuaNT8 Math. Equivalent Low (Offline) (MIT, 2026)

scaling

Table B.3: Overview of quantization algorithms. Note: “Calibration Cost” refers to
the computational overhead required to determine quantization parameters.

LLM.int8() (Dettmers et al., 2022) is unique in its runtime approach to outliers, sep-
arating them into a 16-bit stream while quantizing the bulk of the vector to 8-bit. This
preserves accuracy but incurs a latency penalty due to kernel launch overheads. In contrast,
GPTQ (Frantar et al., 2022) and AWQ (Lin et al., 2023) focus on optimizing the weight
representation offline, allowing for efficient integer-only kernels during runtime. The ap-
proach by Q-BERT (Shen et al., 2020) demonstrates the utility of Hessian information even

in smaller Transformer models, a concept that GPTQ scaled to billions of parameters.

Appendix C: Glossary of Terms

Activation Outliers Feature dimensions in neural network layers that exhibit mag-
nitudes significantly larger (often 100x) than the surrounding values. In Transformer models,
these outliers are systematic and critical for performance. If truncated during quantization,
model accuracy degrades largely. Techniques like LLM.int8() (Dettmers et al., 2022) and
SmoothQuant (MIT, 2026) specifically address this phenomenon.

Affine Quantization A mapping scheme where real values are approximated by
integers using a linear transformation defined by a scale factor (S) and a zero-point (7).
This is the standard arithmetic used in INTS inference on most hardware accelerators.

Calibration The process of determining the optimal quantization parameters (scale
and zero-point) for activations. This typically involves passing a small set of representative

data (calibration set) through the model to observe the dynamic range of activation tensors.
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Edge AI The deployment of artificial intelligence algorithms on local devices (e.g.,
smartphones, IoT sensors, embedded systems) rather than centralized cloud servers. This
paradigm reduces latency, bandwidth usage, and privacy risks (Dr.J.V.Anchitaalagammai et
al., 2025).

FPGA (Field-Programmable Gate Array) An integrated circuit designed to be
configured by a customer or a designer after manufacturing. FPGAs are increasingly used
for LLM inference due to their ability to support custom precision arithmetic and variable
bit-widths (Muller et al., 2024)(Sadr et al., 2025).

Hessian Matrix A square matrix of second-order partial derivatives of a scalar-
valued function. In the context of quantization (e.g., GPTQ (Frantar et al., 2022), Q-BERT
(Shen et al., 2020)), the Hessian of the loss function with respect to the weights indicates
the sensitivity of the model to perturbations (errors) in those weights.

Inference The phase where a trained model is used to make predictions or gener-
ate text based on new input data. Quantization primarily targets the optimization of the
inference phase to reduce cost and latency.

Mixed-Precision Inference A technique where different parts of a model or differ-
ent operations are computed at varying precisions. For example, storing weights in INT4
while performing accumulation in FP16, or dealing with outliers in FP16 while the rest of
the matrix multiplication occurs in INT8 (Dettmers et al., 2022)(Kim et al., 2025).

Post-Training Quantization (PTQ) A quantization technique applied after the
model has been fully trained, requiring little to no retraining. PTQ is preferred for LLMs
due to the prohibitive cost of retraining massive models. Methods like GPTQ (Frantar et
al., 2022) and AWQ (Lin et al., 2023) are examples of PTQ.

Quantization-Aware Training (QAT) A method where quantization errors are
simulated during the training process (forward pass), allowing the model to learn parame-
ters that are strong to quantization. While often yielding higher accuracy than PTQ), it is

computationally expensive for LLMs.
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Systolic Array A homogeneous network of tightly coupled data processing units
(DPUs). Each unit computes a partial result and passes it to a neighbor. This architecture
is highly efficient for matrix multiplications and is the basis for Google’s TPU and many
FPGA accelerators (Wang et al., 2025)(Chang, 2025).

Zero-Point An integer value in the quantized domain that corresponds to the real
value zero. It allows the quantization scheme to represent asymmetric ranges (e.g., outputs

of ReLU activations).

Appendix D: Additional Resources and Tools

This appendix curates a list of essential software frameworks, libraries, and hardware
development kits referenced throughout the thesis. These resources facilitate the implemen-

tation of quantized LLMs and their deployment on integer-only hardware.

D.1 Quantization Libraries and Frameworks

GPTQ (Generative Pre-trained Transformer Quantization) Description: A
current algorithm for compressing LLMs to 3 or 4 bits with negligible accuracy loss. The
official implementations uses Hessian-based information to update weights in a layer-wise
manner. Key Reference: Frantar et al. (Frantar et al., 2022) Relevance: Essential for deploy-
ing 175B+ parameter models on single GPUs.

LLM.int8() / bitsandbytes Description: A library enabling 8-bit matrix multipli-
cation for Transformers. It introduces a mixed-precision decomposition to handle activation
outliers, allowing 8-bit inference with performance matching 16-bit baselines. Key Reference:
Dettmers et al. (Dettmers et al., 2022) Relevance: Widely used in the Hugging Face system
for accessible LLM inference.

AWQ (Activation-aware Weight Quantization) Description: A hardware-

friendly quantization method that scales weights based on activation salience. It avoids the
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reconstruction overhead of GPT(Q and preserves generalist capabilities of instruction-tuned
models. Key Reference: Lin et al. (Lin et al., 2023) Relevance: Gaining popularity for
high-throughput serving systems (e.g., vLLM).

OpenVINO Toolkit Description: Intel’s toolkit for optimizing and deploying deep
learning models on Intel hardware (CPUs, iGPUs, VPUs). It supports model optimiza-
tion (including quantization) to accelerate inference at the edge. Key Reference: Kapo et
al. (Kapo et al., 2024) Relevance: Critical for deploying quantized models on standard CPU

architectures found in medical and industrial edge devices.

D.2 Hardware-Specific Development Tools

Xilinx Vitis AI Description: A comprehensive development environment for Al
inference on Xilinx hardware platforms, including FPGAs and ACAPs. It includes the
Deep Learning Processor Unit (DPU) IP and tools for quantizing models to INT8. Key
Reference: Sadr et al. (Sadr et al., 2025) Relevance: Enables the deployment of DCGANs
and Transformers on FPGAs with optimized DSP utilization.

NVIDIA TensorRT Description: A high-performance deep learning inference SDK.
It includes a post-training quantization calibration tool that optimizes kernels for INTS8
execution on Tensor Cores. Key Reference: Implied in discussions of GPU acceleration (Dua
& Patel, 2024). Relevance: The standard for maximizing throughput on NVIDIA GPUs

(e.g., Jetson Orin (Dr.J.V.Anchitaalagammai et al., 2025)).

D.3 Research Datasets and Benchmarks

GLUE / SuperGLUE Description: General Language Understanding Evaluation
benchmarks. These datasets are standard for evaluating the accuracy degradation of quan-

tized models compared to their full-precision counterparts. Key Reference: Referenced in

Q-BERT analysis (Shen et al., 2020).
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ImageNet (for Vision Transformers) Description: While primarily for vision, this
dataset is used to benchmark hybrid CNN-Transformer architectures and Diffusion Trans-
formers (DiT) under quantization. Key Reference: Kim et al. (Kim et al., 2024), Kim et
al. (Kim et al., 2025).

D.4 Further Reading on Hardware Co-Design

For researchers interested in the intersection of hardware architecture and algorithm
design: - Systolic Arrays: Wang et al. (Wang et al., 2025) and Chang (Chang, 2025) pro-
vide in-depth analyses of configuring systolic arrays for GPGPUs and FPGAs. - In-Memory
Computing: Rodriguez (RODRIGUEZ, 2025) explores dynamic cross-layer memory opti-
mizations, a frontier beyond standard quantization. - RISC-V Optimization: Martinez
et al. (Martinez et al., 2025) discuss the specifics of optimizing Transformer decoders for the

open RISC-V instruction set architecture.
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