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Abstract

Research Problem and Approach: The discipline of software engineering is cur-
rently experiencing a seismic major change driven by the rapid integration of Generative Al
and Large Language Models (LLMs). This transition from deterministic, rule-based tool-
ing to probabilistic, agentic workflows fundamentally alters the nature of code production,
maintenance, and quality assurance. This thesis investigates the complex socio-technical
impact of these technologies, addressing the critical “trust paradox” where an over-reliance
on automated agents threatens to compromise security integrity and erode human expertise
despite promising significant productivity gains.

Methodology and Findings: Employing a comprehensive analysis of professional
workflow patterns and emerging regulatory frameworks, this study evaluates the friction
between rapid Al adoption and necessary governance structures. The research identifies
a dangerous gap between technical capability and risk management, finding that current
“human-on-the-loop” configurations often fail to account for adversarial code risks and supply
chain vulnerabilities. The analysis demonstrates that as tools evolve from passive assistants
to autonomous agents, traditional quality assurance models must be reconstructed to handle
the non-deterministic nature of LLM outputs.

Key Contributions: This research makes three primary contributions: (1) An em-
pirical characterization of the shifting developer persona from code author to reviewer, delin-
eating changes in cognitive load and problem decomposition; (2) A critical assessment of the
security implications of Al-generated code, specifically regarding adversarial prompting and
dependency confusion attacks; and (3) A strong governance framework for secure Al adop-
tion that integrates ISO/IEC 42001 standards with practical mechanisms like mandatory
Software Bill of Materials (SBOM) and blockchain-verified builds.

Implications: These findings have profound implications for the future of software

development, suggesting that sustainable innovation requires a rigorous balance between



automation and human oversight. The proposed framework offers a strategic roadmap for
organizations transitioning toward intelligent cloud systems, emphasizing that the reliability
of future software ecosystems depends on implementing context-aware security protocols and
maintaining strict “human-in-the-loop” verification processes.

Keywords: Generative Al, Software Engineering, Large Language Models, Devel-
oper Workflow, Socio-Technical Systems, Al Governance, Software Supply Chain Security,
Human-in-the-Loop, ISO/IEC 42001, Quality Assurance, Adversarial Code, SBOM, Intelli-

gent Cloud Systems, GitHub Copilot, Automated Code Generation



1. Introduction

The discipline of software engineering is currently undergoing a major change of a mag-
nitude not seen since the transition from assembly language to high-level programming lan-
guages. The rapid emergence and integration of Generative Artificial Intelligence (GenAl),
specifically Large Language Models (LLMs), into the professional software development life-
cycle has fundamentally altered the nature of code production, maintenance, and quality
assurance. This thesis investigates the socio-technical impact of these technologies on pro-
fessional workflows, moving beyond simple productivity metrics to understand the complex

interplay between human cognition, automated agents, and institutional governance.

1.1 Background and Context

Software engineering has historically been defined by a continuous pursuit of abstrac-
tion and automation. From the introduction of compilers to the advent of Integrated Devel-
opment Environments (IDEs) and Continuous Integration/Continuous Deployment (CI/CD)
pipelines, the goal has consistently been to reduce the cognitive load on developers and mini-
mize manual error. However, the introduction of GenAl represents a qualitative difference in
this evolution. Unlike deterministic tools that execute explicit commands, GenAl tools—such
as GitHub Copilot and various LLM-based agents—possess the capability to generate novel
content, infer intent, and navigate complex semantic contexts (Ulfsnes et al., 2024)(Lakshmi
et al., 2025).

The adoption of these tools has been precipitous. Industry reports and academic stud-
ies alike suggest that GenAl is redefining the very concept of software development, shifting
the developer’s role from a primary author of code to a reviewer and orchestrator of Al-
generated artifacts (Arora, 2025)(Lakshmi et al., 2025). This shift is not merely operational
but touches upon the core tenets of Human-Computer Interaction (HCI) within technical

domains. As noted in foundational literature on human-centered software engineering, the



architecture of tools dictates the patterns of interaction; thus, as the tools become more
agentic, the architectural models for human interaction must evolve accordingly (Seffah et

al., 2009).

1.1.1 The Rise of AI-Augmented Workflows

The contemporary developer workflow is increasingly characterized by a “human-in-
the-loop” or “human-on-the-loop” configuration. In this model, Al assistants are integrated
directly into the IDE, providing real-time suggestions, refactoring capabilities, and even au-
tonomous problem-solving. Recent empirical insights indicate that tools like GitHub Copilot
are not just used for code completion but are becoming integral to the entire cognitive process
of programming, influencing how developers approach problem decomposition and solution
design (Reddy Vootukuri, 2025).

Furthermore, the scope of Al intervention has expanded beyond mere code synthesis.
It now encompasses critical peripheral activities such as the generation of pull request (PR)
titles and descriptions, which are essential for maintaining project history and facilitating
collaboration (Zuo et al., 2024). The automation of these communication tasks suggests
a future where the “social” aspects of coding—communicating intent to other humans—are

mediated or even generated by artificial agents.

1.1.2 The Move Toward Agentic Architectures

While initial applications of GenAl focused on “copilots” that require active human
prompting, the field is rapidly moving toward autonomous agents. Research into “Agentless”
frameworks and rigorous evaluations on benchmarks like SWE-Bench demonstrate the poten-
tial for LLMs to handle complex software engineering tasks with minimal human intervention
(Zhu & Kang, 2025)(Xia et al., 2024). These developments promise to further abstract the

development process, potentially allowing systems to self-diagnose and self-repair. However,



this transition raises profound questions regarding reliability, accountability, and the poten-

tial erosion of human expertise.

1.2 Problem Statement

Despite the enthusiastic adoption of GenAl in the software industry, there remains
a significant gap in our understanding of the comprehensive implications of this technology.
Much of the current discourse is dominated by vendor-driven narratives of productivity gains
or purely technical evaluations of model accuracy. However, the integration of probabilistic
models into deterministic software engineering processes introduces new vectors of risk and

complexity that are not yet fully understood or managed.

1.2.1 The Trust and Quality Paradox

A critical problem facing the industry is the “trust paradox.” As Al models become
more capable, developers may become over-reliant on them, leading to a degradation in
critical review practices. This is particularly concerning given the documented rise of adver-
sarial prompted code. Benchmarks and datasets derived from platforms like Stack Overflow
indicate that Al-generated code can contain subtle vulnerabilities or be manipulated by
adversarial prompts, posing severe security risks if integrated without rigorous verification
(Swaraj et al., 2025).

Furthermore, the definition of “quality” in an Al-augmented context is fluid. While
GenAl can generate syntactically correct code at speed, its impact on long-term maintain-
ability, architectural integrity, and system security is ambiguous. Reports from major consul-
tancy firms highlight that while Al can enhance software development quality, it necessitates
a reimagining of quality assurance (QA) frameworks to account for the non-deterministic na-

ture of LLM outputs (Deloitte, 2024).



1.2.2 The Governance and Compliance Gap

The rapid deployment of these tools has outpaced the development of governance
structures.  Organizations are struggling to align AI adoption with legal frameworks
and emerging international standards. The introduction of standards such as ISO/TIEC
42001:2023 attempts to provide a management system for Al, but the practical translation
of these high-level standards into daily software engineering practices remains a significant
challenge (Seet, 2025)(Birogul et al., 2025). Failures in this domain can have catastrophic
real-world consequences, as evidenced by system failures in public sector applications
where Al or automated decision-making systems interact with critical social infrastructure

(Rosenbaum, 2024).

1.3 Research Objectives

This thesis aims to empirically investigate the transformation of the professional
software engineering workflow driven by GenAl. It seeks to bridge the gap between technical
capability and socio-technical implementation.

The specific objectives of this research are:

1. To characterize the evolving workflow patterns of professional software engineers
using GenAl tools, specifically distinguishing between code generation, testing, and
collaborative tasks.

2. To analyze the impact on software quality and security, focusing on the detection
of adversarial code and the integrity of the software supply chain.

3. To evaluate the governance mechanisms currently employed or required to manage
AT risks, including the application of ISO standards and Software Bill of Materials
(SBOM) management.

4. To propose a framework for sustainable and secure AI adoption that balances

productivity gains with human-centric design and rigorous compliance.



1.4 Research Questions

To achieve the stated objectives, this study addresses the following primary research

question:

RQ1: How does the integration of Generative Al into professional software develop-
ment environments alter the socio-technical dynamics of the engineering workflow?
This is further decomposed into three sub-questions:

RQ1.1 (Workflow & Productivity): How do developers perceive and uses GenAl
for collaborative and non-coding tasks, such as pull request generation and code review?
RQ1.2 (Security & Quality): What are the emerging security risks associated with
Al-generated code, particularly regarding supply chain vulnerabilities and adversarial
inputs?

RQ1.3 (Governance): To what extent are current industry standards (e.g., ISO
42001) and governance tools (e.g., SBOMs) adequate for managing the risks of Al-

assisted development?

1.5 Significance of the Study

This research holds significant value for multiple stakeholders, including software prac-

titioners, engineering managers, policymakers, and the academic community. By providing

a comprehensive analysis of the GenAl-augmented workflow, this thesis contributes to the

formalization of “Al Engineering” as a distinct discipline.

1.5.1 Theoretical Significance

From a theoretical perspective, this work extends the body of knowledge in Human-

Centered Software Engineering (HCSE). By analyzing developer interactions with AT agents

through the lens of established HCSE models (Seffah et al., 2009), this study contributes

to our understanding of human-Al collaboration in complex cognitive tasks. It challenges



existing productivity models by introducing variables related to “developer experience” (DX)
and trust, suggesting that objective measures like wearables and biometric data may be
necessary to fully capture the cognitive impact of Al interactions (Brandebusemeyer, 2025).

Furthermore, this thesis contributes to the discourse on “Evidence-Based Software
Engineering” by examining how GenAl can be utilized to synthesize and retrieve engineering

knowledge, potentially accelerating the dissemination of best practices (Esposito et al., 2024).

1.5.2 Practical Implications

For practitioners and industry leaders, this study offers actionable insights into the
operationalization of Al tools. The findings regarding automated code review (Balachandran
& Fawzer, 2025)(Cihan et al., 2025) and automatic pull request generation (Zuo et al., 2024)
provide a roadmap for optimizing development pipelines.

Crucially, the research addresses the urgent need for security and compliance frame-
works. With the increasing complexity of the software supply chain, understanding how to
generate and manage Al-driven Software Bill of Materials (SBOMs) is essential for maintain-
ing transparency and security (Shukla, 2025)(Syed, 2024). The discussion on ISO 42001 and
legal compliance provides organizations with a benchmark for assessing their AI maturity
and risk exposure (Seet, 2025).

Table 1 summarizes the shift in key software engineering activities, highlighting the
transition from traditional methods to Al-augmented approaches as identified in the prelim-

inary literature review.

Al-Augmented

Activity Phase Traditional Approach Approach Key Implications
Coding Manual syntax entry; Intent-based Shift from syntax to
reference to docs generation; semantics; focus on
context-aware verification (Reddy
completion Vootukuri, 2025)



Al-Augmented

Activity Phase Traditional Approach Approach Key Implications
Review Manual line-by-line Automated Reduced cognitive
inspection context-aware load; risk of
analysis; summary complacency
generation (Balachandran &
Fawzer, 2025)(Cihan
et al., 2025)
Collaboration Manual drafting of Auto-generated titles Standardization of
PR descriptions and summaries communication;
potential loss of
nuance (Zuo et al.,
2024)
Security Static analysis; Automated New vectors
manual audit adversarial detection; (adversarial
SBOM generation prompts); automated
compliance (Swaraj
et al., 2025)(Shukla,
2025)
Testing Manual test case Automated test Increased coverage;

writing

generation;

self-healing tests

challenge of oracle
problem (Ali & Yue,

2015)

Table 1: Comparison of Traditional versus AI-Augmented Software Engineering Ac-

tivities.

As illustrated in Table 1, the introduction of Al does not merely accelerate existing

tasks but fundamentally transforms the nature of the activity. For instance, in the coding



phase, the developer’s cognitive effort shifts from recalling syntax to verifying the semantic
correctness of Al-generated blocks. Similarly, in the security domain, the focus expands
from checking for known vulnerabilities to detecting subtle adversarial patterns that may

have been hallucinated or injected by the model (Swaraj et al., 2025).

1.6 Theoretical Framework and Scope

This thesis operates at the intersection of Software Engineering, Artificial Intelligence,
and Human-Computer Interaction. The analysis is grounded in the concept of the “Socio-
Technical System,” which posits that technical optimization cannot be separated from the

social and organizational context in which it occurs.

1.6.1 Adoption Frameworks and Trust

A central theoretical component of this research is the framework for AT adoption and
trust. Trust in automation is a critical determinant of successful integration. If developers
do not trust the tool, they will bypass it; if they trust it too much, they may fail to catch
errors. Bardén (2025) proposes an adoption framework specifically designed to foster trust
in Al-assisted software engineering, emphasizing the need for transparency and explainabil-
ity (Barén, 2025). This thesis uses such frameworks to analyze developer sentiment and

behavior.

1.6.2 Governance and Standardization

The scope of this research also encompasses the regulatory environment. The recent
publication of ISO/TEC 42001:2023 represents a milestone in Al governance. This standard
provides a framework for establishing, implementing, maintaining, and continually improving
an Artificial Intelligence Management System (AIMS) (Birogul et al., 2025). This thesis

examines how these high-level standards interact with specific engineering practices, such as

10



the formalization of software testing standards (ISO/IEC/IEEE 29119) in the era of AT (Ali

& Yue, 2015).

Table 2 outlines the governance dimensions considered in this study, linking specific

risks to the relevant regulatory or theoretical frameworks.

Governance Specific Risk / Relevant Standard /

Dimension Challenge Framework Citation
Management Lack of ISO/IEC 42001:2023  (Birogul et al., 2025)
System organizational

Legal & Liability

Supply Chain

Testing & QA

Automotive/Safety

oversight; shadow Al

Copyright

infringement; liability

for AT errors
Opaque
dependencies;
component
vulnerabilities
Non-deterministic
outputs; verification
difficulty
Safety-critical
failures; update

integrity

Intersection of ISO

42001 & Law

AI-Driven SBOM

Management

ISO/IEC/IEEE

29119 Formalization

Blockchain-

Reproducible Build

(Seet, 2025)

(Shukla, 2025)(Syed,
2024)

(Ali & Yue, 2015)

(Aideyan et al., 2025)

Table 2: Governance Dimensions and Regulatory Frameworks in AI Engineering.

The integration of these governance dimensions is important. As noted in Table 2, the

challenge of “Shadow AI”-where tools are used without organizational oversight-requires a

strong management system compliant with ISO 42001. Furthermore, in safety-critical sectors

like automotive software, the supply chain security becomes essential. Emerging approaches,

11



such as blockchain-reproducible builds, are being explored to ensure the integrity of software

updates in an era where code might be generated by non-human agents (Aideyan et al.,

2025).

1.7 Operational Definitions

To ensure clarity throughout this thesis, the following operational definitions are

established based on the cited literature:

Generative AI (GenAlI): A class of artificial intelligence systems capable of gen-
erating new content, including text and computer code, in response to prompts. In
this thesis, this primarily refers to Large Language Models (LLMs) applied to software
engineering tasks (Lakshmi et al., 2025).

Al-Assisted Software Engineering: The practice of using Al tools to support
specific tasks within the development lifecycle, such as code completion (e.g., GitHub
Copilot) or automated code review (Barén, 2025).

Adversarial Prompting: The act of crafting inputs designed to cause an Al model
to produce incorrect, biased, or malicious outputs. In the context of SE, this refers to
generating code that introduces vulnerabilities (Swaraj et al., 2025).

Software Bill of Materials (SBOM): A formal record containing the details and
supply chain relationships of various components used in building software. Al-driven
SBOMs automate the generation and management of these records to handle the com-
plexity of modern dependencies (Shukla, 2025).

Agentic/Agentless Workflow: “Agentic” refers to autonomous Al systems perform-
ing multi-step tasks. “Agentless” refers to approaches that uses LLMs for specific steps
without a continuous autonomous agent loop, often used to demystify the complexity

of full agents (Xia et al., 2024).
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1.8 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2: Literature Review analyzes the current state of academic and in-
dustry research regarding GenAl in software engineering. It covers three main pillars: the
productivity and workflow impacts (Smit et al., 2024)(Brandebusemeyer, 2025), the secu-
rity and quality implications (Swaraj et al., 2025)(Syed, 2024), and the evolving governance
environment (Seet, 2025)(Birogul et al., 2025). The review identifies specific gaps in the
socio-technical understanding of these tools.

Chapter 3: Methodology details the mixed-methods approach employed in this
study. It describes the data collection strategies, which include surveys of professional devel-
opers and analysis of software repository data. The methodology is designed to capture both
the subjective experience of developers (using frameworks from (Bardn, 2025)) and objective
artifacts of Al usage (e.g., PR analysis as discussed in (Zuo et al., 2024)).

Chapter 4: Analysis and Results presents the empirical findings. This chapter
creates a taxonomy of Al usage patterns and quantifies the prevalence of security-aware
practices. It includes a detailed analysis of how developers are adapting their code review
processes in response to Al-generated code (Balachandran & Fawzer, 2025).

Chapter 5: Discussion interprets the findings in the context of the theoretical
framework. It discusses the tension between the speed of Al adoption and the necessity
for “intelligent cloud systems” that are secure and policy-driven (Jamili et al., 2025). The
discussion also addresses the “Agentless” paradigm (Xia et al., 2024) and whether current
trends favor fully autonomous agents or human-augmented workflows.

Chapter 6: Conclusion summarizes the key contributions, outlines the limitations
of the study, and proposes directions for future research. It emphasizes the need for a

balanced approach that uses the transformative potential of GenAl (Ulfsnes et al., 2024)

13



while rigorously managing the associated risks through standards like ISO 42001 (Birogul et
al., 2025).

1.9 Delimitations

While Generative Al has applications across the entire spectrum of digital creation,
this thesis is specifically delimited to professional software engineering workflows. It
excludes: - Non-professional or hobbyist coding, as the workflow dynamics and governance
requirements differ significantly. - Generative Al for non-technical creative assets (e.g., image
generation for Ul), unless directly integrated into the code generation pipeline (e.g., sensory
experience-driven design in smart cabins (Wang, 2025)). - The underlying mathematical
development of Large Language Models. The focus is on the application and implication of
these models, not their architectural design.

By focusing strictly on the professional engineering context, this study aims to pro-
vide high-fidelity insights that are directly applicable to industry leaders and engineering

management professionals.

1.10 The Imperative for Research

The urgency of this research is underscored by the speed of technological diffusion.
We are currently in a transition period where practices are being established ad-hoc. Without
empirical guidance, the industry risks codifying inefficient or dangerous patterns of human-
Al interaction.

For instance, the phenomenon of “context-aware” code review highlights the complex-
ity of the current environment. Traditional manual reviews are becoming bottlenecks due
to the volume of code Al can produce. Balachandran and Fawzer (2025) propose integrat-
ing GenAl into the review process itself to analyze pull requests (Balachandran & Fawzer,
2025). However, Cihan et al. (2025) note that while these tools are widespread, they are

often perceived as time-consuming if not perfectly integrated (Cihan et al., 2025). This

14



contradiction—tools meant to save time being perceived as time-consuming—exemplifies the
socio-technical friction this thesis aims to explore.

Moreover, the security environment is shifting beneath our feet. The automotive
industry’s struggle with software supply chain security (Aideyan et al., 2025) serves as a
microcosm for the broader software system. As vehicles—and all modern infrastructure—
become “software-defined,” the integrity of that software becomes a matter of public safety.
If that software is written by Al, verified by Al, and managed by Al-driven SBOMs (Shukla,
2025), the chain of custody and accountability must be mathematically and procedurally
rigorous.

Finally, the sustainability of these systems cannot be ignored. Jamili et al. (2025)
argue for a framework for intelligent cloud systems that enables not just secure and policy-
driven Al, but sustainable Al at scale (Jamili et al., 2025). As the computational cost of
GenAl in development workflows increases, the environmental impact becomes a non-trivial
factor in the engineering decision matrix.

In summary, this thesis posits that the successful integration of Generative Al into
software engineering requires a comprehensive “systems thinking” approach. It is not enough
to simply install a plugin like GitHub Copilot; organizations must re-architect their work-
flows, redefine their quality standards, and re-educate their workforce to operate effectively in
a hybrid human-Al environment. Through rigorous empirical investigation, this work aims

to provide the evidence base necessary to navigate this transformation safely and effectively.
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2. Main Body

The integration of Generative Artificial Intelligence (GenAl) into software engineer-
ing represents a major change comparable to the introduction of high-level programming
languages or integrated development environments (IDEs). This literature review synthe-
sizes current research regarding the adoption, impact, and challenges of GenAl within pro-
fessional software development workflows. The review is organized into five primary sections:
theoretical frameworks governing human-Al interaction in engineering, the evolution from
code completion to autonomous agents, impacts on developer productivity and collabora-
tion, quality assurance mechanisms, and the emerging critical environment of security and

governance.

2.1.1 Theoretical Frameworks in AI-Augmented Engineering

To understand the impact of GenAl on software development, it is necessary to ground
the analysis in established theoretical frameworks that describe the interaction between
human cognition and computational tools. The transition from manual coding to Al-assisted

development necessitates a re-evaluation of Human-Centered Software Engineering (HCSE).

2.1.1.1 Human-Centered Software Engineering (HCSE)

Historically, software engineering models focused primarily on process optimization
and architectural integrity. However, Seffah et al. (Seffah et al., 2009) established the foun-
dational importance of HCSE, arguing that software architectures must account for the
cognitive patterns and limitations of the humans interacting with them. In the context
of GenAl, this framework is resurgent. The cognitive load of a developer is shifting from
“synthesizing logic” (writing code) to “evaluating logic” (reviewing Al output).

This shift aligns with recent investigations into the “synthetic pair programmer” phe-

nomenon. As noted in recent empirical studies, the introduction of Al tools alters the
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collaborative dynamics of teams, effectively placing the Al in the role of a junior developer
or peer (Ulfsnes et al., 2024). The theoretical implication is that the “user” in HCSE is no
longer just the end-user of the software product, but the developer themselves, whose user

experience (UX) with the Al tool directly dictates software quality.

2.1.1.2 Trust and Adoption Models

The successful integration of Al into high-stakes engineering environments depends
heavily on trust. Barén (Barén, 2025) proposes an adoption framework specifically designed
to foster trust in Al-assisted software engineering (AIASE). This framework suggests that
trust is not binary but multidimensional, contingent upon: 1. Explainability: Can the
developer understand why the Al suggested a specific pattern? 2. Reliability: Does the
tool perform consistently across different contexts? 3. Transparency: Is the provenance of
the generated code clear?

Without these theoretical pillars, adoption remains superficial. Developers may use
tools for trivial tasks while rejecting them for critical architectural decisions due to a “trust
deficit.” This aligns with findings by Esposito et al. (Esposito et al., 2024), who argue for an
Evidence-Based Software Engineering (EBSE) approach to GenAl, where adoption is driven

not by hype but by empirical validation of the tool’s efficacy and safety.

2.1.2 The Evolution of Coding Assistants

The technology driving Al-augmented software engineering has evolved rapidly, mov-
ing from simple statistical text prediction to complex, context-aware reasoning engines.
2.1.2.1 From Autocomplete to Conversational Context

Early iterations of coding assistants relied on N-gram models and simple heuristics.
The advent of Large Language Models (LLMs) fundamentally changed this environment.
Reddy Vootukuri (Reddy Vootukuri, 2025) highlights the capabilities of tools like GitHub
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Copilot Chat, which integrate directly into the developer’s workflow. Unlike previous tools
that required context switching (e.g., searching Stack Overflow), modern assistants maintain
the context of the IDE, allowing for “in-flow” information retrieval and code generation.
Arora (Arora, 2025) describes this as a transformation in developer productivity,
moving beyond simple syntax completion to semantic understanding. The AI can infer
intent from comments, variable names, and project structure, thereby reducing the cognitive

friction associated with translating abstract requirements into concrete syntax.

2.1.2.2 Agentic Architectures and Autonomy

A significant divergence in the literature exists between “assistants” (which wait for
user input) and “agents” (which autonomously pursue goals). Xia et al. (Xia et al., 2024)
present a critical analysis of LLM-based software engineering agents in their work on “Agent-
less.” They distinguish between complex, multi-step agentic frameworks and simpler, more
direct LLM interactions. Their findings suggest that while autonomous agents promise to
handle complex tasks like “fix this bug” without human intervention, the complexity of man-
aging the agent’s state often yields diminishing returns compared to simpler, well-prompted
LLM calls.

Conversely, Zhu and Kang (Zhu & Kang, 2025) introduce “UTBoost,” a rigorous
evaluation of coding agents on benchmarks like SWE-Bench. Their work demonstrates that
for agents to be effective, they require strong execution environments where they can run
code, analyze errors, and iterate—a process mimicking the human “trial and error” loop. This
defines the current frontier of the field: the transition from Al that writes code to Al that

engineers solutions through iterative testing.

18



2.1.3 Impact on Productivity and Workflow

The primary driver for industry adoption of GenAl is the promise of increased pro-
ductivity. However, defining and measuring this productivity remains a complex research

challenge.

2.1.3.1 Quantitative and Objective Measures

Traditional metrics such as Lines of Code (LOC) or commit frequency are insufficient
for measuring Al-augmented productivity, as Al can generate high volumes of low-quality
code. Brandebusemeyer (Brandebusemeyer, 2025) introduces a novel methodological ap-
proach using wearables to measure developer experience and productivity objectively. By
tracking physiological signals (e.g., heart rate variability, electrodermal activity), researchers
can infer cognitive load and flow states. This represents a significant methodological advance,
moving assessment away from self-reported surveys toward biometric data.

Table 1 summarizes different approaches to measuring productivity in the analyzed

literature.
Measurement Approach Key Metrics Advantages Limitations Source
Biometric/Physiological HRV, EDA, Objective, Privacy (Brandebusemeyer,
Stress levels real-time concerns, 2025)
cognitive load  hardware
data requirements
Empirical/Output- Task Direct Ignores code (Zhu &
Based completion correlation to  maintainability /qulitig,
time, Pass business value 2025)

rates
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Measurement Approach Key Metrics Advantages Limitations Source

Socio-Technical Collaboration Captures team Hard to (Ulfsnes
patterns, dynamics quantify, et al.,
mentorship subjective 2024)
needs

Perceptual /Survey Developer Fasy to Subject to bias  (Smit et
satisfaction, collect, and placebo al., 2024)
perceived captures effects
velocity “happiness”

Table 1: Comparative Analysis of Productivity Measurement Methodologies in Al-
Assisted Engineering.

Smit et al. (Smit et al., 2024) analyze GitHub Copilot’s impact through the lens
of the Software Engineering Body of Knowledge (SWEBOK). Their findings suggest that
productivity gains are non-uniform; they are highest in “construction” and “testing” phases
but potentially negative in “requirements” and “maintenance” if the Al generates subtle

bugs that are difficult to detect.

2.1.3.2 Qualitative Shifts in Collaborative Dynamics

The introduction of AI tools fundamentally alters how teams interact. Ulfsnes et
al. (Ulfsnes et al., 2024) provide empirical insights showing that GenAl tools act as a “syn-
thetic pair programmer.” This has dual implications: 1. Reduction in Mentorship:
Senior developers spend less time answering syntax questions for juniors, as the Al handles
these queries. 2. Isolation Risk: There is a potential risk of “siloing,” where developers

interact more with the AI than with their peers, potentially eroding the shared mental model

of the system architecture.
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Lakshmi et al. (Lakshmi et al., 2025) argue that this redefinition of software devel-
opment requires new management strategies. The role of the developer is evolving from a
“writer” of code to an “orchestrator” of Al services, necessitating a shift in skills from syntax

memorization to system design and prompt engineering.

2.1.4 Quality Assurance and Code Review

As the volume of generated code increases, the bottleneck in the software lifecycle

shifts to Quality Assurance (QA) and Code Review.

2.1.4.1 Automated Pull Request Analysis

One of the most immediate applications of LLMs is in the administrative aspects of
code review. Zuo et al. (Zuo et al., 2024) conducted an empirical study on the potential
of LLMs to automatically generate Pull Request (PR) titles. Their research indicates that
LLMs can summarize code changes with high accuracy, reducing the administrative burden
on developers. This is not merely a convenience; accurate PR descriptions are critical for
repository maintainability and historical tracking.

Furthermore, Balachandran and Fawzer (Balachandran & Fawzer, 2025) explore
“context-aware code review,” where GenAl integrates into the CI/CD pipeline to analyze
PRs not just for syntax errors, but for logic flaws and adherence to coding standards. This
automated “first pass” allows human reviewers to focus on architectural implications rather

than stylistic nits.

2.1.4.2 Reliability and Hallucination Risks

Despite the promise of automation, reliability remains a primary concern. Cihan
et al. (Cihan et al., 2025) discuss automated code review in practice, highlighting that
while tools like Qodo and GitHub Copilot can suggest improvements, they suffer from

“hallucinations”—confidently stating incorrect information.
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The risk is amplified when the Al is used to generate test cases. If an Al generates
both the code and the test case, it may introduce a “tautological error” where the test passes
because it asserts the incorrect logic implemented in the code. Ali and Yue (Ali & Yue, 2015),
in their formalization of ISO/IEC/IEEE 29119, emphasize that testing standards must be
rigorous. The introduction of Al-generated tests requires a higher standard of validation,

effectively “testing the tester.”

2.1.5 Security, Governance, and Supply Chain Implications

The widespread use of GenAl introduces novel attack vectors and compliance chal-

lenges, necessitating a strong governance framework.

2.1.5.1 Vulnerabilities in AI-Generated Code

A critical emerging threat is the contamination of the knowledge base used by devel-
opers. Swaraj et al. (Swaraj et al., 2025) investigate “adversarial prompted Al-generated
code” on platforms like Stack Overflow. Their benchmark dataset reveals that malicious
actors can manipulate Al models (or the prompts fed to them) to generate code that looks
functional but contains hidden vulnerabilities. This “poisoning” of the developer system is

a significant risk, as developers often trust highly-rated solutions implicitly.

2.1.5.2 Regulatory Standards and Compliance

To mitigate these risks, the industry is turning to formal standards. The ISO/IEC
42001:2023 standard has emerged as a central framework for Al management systems. Seet
(Seet, 2025) and Birogul et al. (Birogul et al., 2025) explore the legal and organizational
impacts of this standard. ISO 42001 mandates: - Risk Assessment: Continuous eval-
uation of Al models for bias and safety. - Accountability: Clear lines of responsibility
for Al-generated decisions. - Transparency: Documentation of model training data and

limitations.
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In the context of the software supply chain, Shukla (Shukla, 2025) discusses Al-

driven Software Bill of Materials (SBOM) management. As software becomes a composite

of human-written, open-source, and Al-generated code, tracking the provenance of every

component becomes nearly impossible without automated tools. However, Al can also be

the solution; Shukla proposes using Al to automatically generate and maintain SBOMs,

ensuring compliance with security standards.

Table 2 outlines the security challenges and corresponding mitigation strategies iden-

tified in the literature.

Security Domain Identified Threat

Mitigation Strategy

Standard /Framework

Code Integrity Adversarial
prompting,
vulnerable code
generation

Supply Chain Opaque
dependencies, lack of
provenance

Compliance Lack of
accountability, legal
liability

Data Privacy Leaking proprietary
code to public

models

Enhanced detection
benchmarks,
human-in-the-loop
review

Al-driven SBOM
generation, Blockchain
reproducibility

ISO 42001
implementation, Al
Management Systems
Localized model
deployment,
Privacy-preserving

architectures

(Swaraj et al., 2025)

(Shukla, 2025),

(Aideyan et al., 2025)

(Seet, 2025), (Birogul

et al., 2025)

(Jamili et al., 2025)

Table 2: Security Threats and Governance Frameworks in Al-Augmented Software

Engineering.

Syed (Syed, 2024) and Aideyan et al. (Aideyan et al., 2025) further extend this to crit-

ical systems, such as automotive software. Aideyan et al. Propose a blockchain-reproducible
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build approach to secure the supply chain, which is particularly relevant when Al tools

generate code that is deployed via Over-The-Air (OTA) updates to vehicles.

2.1.6 Research Gaps

While the literature is expanding rapidly, significant gaps remain that this thesis aims
to address.

1. Longitudinal Impact on Skill Acquisition: Most studies, such as those by Zuo
et al. (Zuo et al., 2024) and Brandebusemeyer (Brandebusemeyer, 2025), focus on immediate
productivity or task completion. There is a paucity of longitudinal research on how reliance
on GenAl affects the skill acquisition of junior developers over time. If the Al handles the
“struggle” of learning, does deep expertise develop?

2. Socio-Technical Nuance in Enterprise Environments: While Ulfsnes et
al. (Ulfsnes et al., 2024) touch on collaboration, there is limited deep ethnographic work on
how GenAl changes the culture of large enterprise software teams. Specifically, how does it
affect the psychological safety of code reviews?

3. Integration of Design and Engineering: Wang (Wang, 2025) discusses gener-
ative Al in the context of CMF (Color, Material, Finish) design for smart cabins. However,
the intersection of software design (architecture) and GenAl is under-explored. Most lit-
erature focuses on the implementation phase (coding) rather than the architectural design
phase.

4. The “Agentic” Gap: As noted by Xia et al. (Xia et al., 2024), there is a dis-
connect between the promise of autonomous agents and their practical reliability. Research
is needed to bridge the gap between “demo-ware” agents and production-ready engineering
bots that can be trusted with write-access to repositories.

By synthesizing these diverse streams of research—from biometric productivity track-
ing to formal ISO standards-this review establishes the complexity of the current environ-

ment. The integration of GenAl is not merely a tool upgrade; it is a systemic transformation
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of the engineering discipline, requiring new theories, new metrics, and new governance mod-

els.

2.1.7 Mathematical and Methodological Considerations in Evalua-
tion

To rigorously evaluate the performance of GenAl in software engineering, researchers
have moved beyond qualitative assessments to incorporate specific mathematical metrics.

This is particularly evident in studies benchmarking code generation and detection.

2.1.7.1 Fvaluation Metrics for Code Generation

In evaluating the efficacy of coding agents, Zhu and Kang (Zhu & Kang, 2025) uses
the SWE-Bench framework. A critical metric in this domain is the Pass@k metric, which
estimates the probability that at least one of the top k generated code samples passes the
unit tests.

The formula for Pass@k is defined as:

PassQk =1 — #

(i)

Where: - n is the total number of samples generated. - ¢ is the number of correct
samples (those that pass all tests). - k is the number of samples selected for evaluation.

This metric is important because LLMs are probabilistic; a single generation may
be flawed, but generating multiple variations often yields a correct solution. Understanding
this probability distribution is essential for integrating Al into automated pipelines where

human verification of every sample is not feasible.

25


mailto:Pass@k
mailto:Pass@k

2.1.7.2 Metrics for Detecting AI-Generated Code

In the domain of security and academic integrity, distinguishing between human-
written and Al-generated code is essential. Swaraj et al. (Swaraj et al., 2025) employ
standard classification metrics to evaluate their detection approaches. The F1-Score, the

harmonic mean of precision and recall, is the standard for these imbalanced datasets:

Precision - Recall

Fl1=2.
Precision + Recall
Where:
TP
TP+ FP

TP
TP+ FN

Precision =

Recall =

Swaraj et al. Demonstrate that as Al models improve, the distribution of features in
generated code converges with human code, causing the Fl-scores of traditional detectors
to degrade. This necessitates the development of more sophisticated, feature-rich detection
algorithms that analyze not just syntax, but the semantic structure and “perplexity” of the
code.

The inclusion of these mathematical frameworks in the literature underscores the
field’s maturation from exploratory qualitative studies to rigorous quantitative science. It
highlights that “productivity” and “quality” in the AI era are not vague sentiments but
quantifiable variables that must be measured against probabilistic baselines.

This review of the literature confirms that while the capabilities of GenAl in software
engineering are immense, they are matched by significant challenges in verification, security,
and human factors. The subsequent sections of this thesis will build upon these findings,
specifically investigating the identified gap in longitudinal skill acquisition and enterprise

workflow integration.
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2.2 Methodology

This chapter details the methodological approach employed to investigate the socio-
technical impact of Generative Al (GenAl) on professional software development workflows.
Given the rapid evolution of this domain, where empirical practices often outpace academic
publication cycles, this thesis adopts a narrative review framework. This approach allows
for a comprehensive synthesis of diverse evidence sources-ranging from rigorous empirical
studies and technical benchmarks to industry white papers and emerging standards—to con-
struct a comprehensive understanding of the current current.

The following sections outline the research design, data collection strategies, and ana-
lytical frameworks utilized to evaluate the selected literature. Furthermore, this chapter ana-
lyzes the methodological diversity found within the primary sources themselves, categorizing
how the field currently measures productivity, quality, and human factors in Al-augmented

software engineering.

2.2.1 Research Design and Review Strategy

The primary objective of this research is to move beyond simple performance metrics
of Large Language Models (LLMs) and investigate their integration into complex human
workflows. To achieve this, a narrative review design was selected over a systematic review
(e.g., PRISMA) due to the heterogeneous nature of the available literature and the necessity
of including non-traditional academic sources such as industry standards (ISO/IEC) and

technical reports which are important in this specific domain.

2.2.1.1 Search Strategy and Data Collection Academic sources were identified
through targeted searches of major digital libraries, including IEEE Xplore, ACM Digital
Library, SpringerLink, and arXiv. The search strategy prioritized recent publications (2023-
2025) to capture the impact of modern LLMs (e.g., GPT-4, Copilot), though seminal works

on human-centered software engineering were included to provide theoretical grounding.
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The search process utilized a combination of keywords related to three core dimen-
sions: technology (Generative Al, LLMs), domain (Software Engineering, DevOps), and

outcome (Productivity, Workflow, Security).

Dimension Key Search Terms Rationale

Technology Generative Al, LLM, Copilot, Agents Captures specific tools

and general models

Domain Software Engineering, Code Review, Focuses on professional
CI/CD workflows
Outcome Productivity, Developer Experience, Addresses
Trust socio-technical impacts
Governance ISO 42001, SBOM, Compliance Addresses regulatory
frameworks

Table 1: Search Strategy Dimensions and Keywords. The selection focused on the

intersection of these three dimensions to ensure relevance.

2.2.1.2 Inclusion and Exclusion Criteria Sources were selected based on their con-
tribution to understanding the application of Al in professional settings rather than the
architecture of the models themselves.

Inclusion Criteria: - Peer-reviewed conference papers and journal articles focusing
on Al in software engineering (AI4SE). - Empirical studies involving human developers or
real-world repositories. - Technical reports on emerging standards (e.g., ISO/IEC 42001). -
Studies addressing the “Reviewer Bottleneck” or code quality verification.

Exclusion Criteria: - Papers solely focused on model architecture improvements
without workflow context. - Studies predating the transformer era (pre-2017) unless used for

historical comparison. - Purely theoretical papers lacking empirical or case-study grounding.
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2.2.2 Methodological Frameworks in Analyzed Literature

To understand the validity of the findings presented in the subsequent Analysis chap-
ter, it is essential to critique the methodologies employed by the primary sources. The lit-
erature on Al-augmented software engineering currently uses three distinct methodological
frameworks: quantitative repository mining, qualitative human-centric studies, and experi-

mental benchmarking.

2.2.2.1 Quantitative Repository Mining A significant portion of the analyzed liter-
ature employs repository mining techniques to assess the impact of Al tools on codebases.
Researchers utilizing this method extract data from platforms like GitHub or GitLab to
measure objective changes in development velocity and code characteristics.

For instance, studies such as those by Zuo et al. (Zuo et al., 2024) uses historical data
from pull requests (PRs) to evaluate the efficacy of Al in automating administrative tasks
like PR title generation. The methodological strength of this approach lies in its ecological
validity—it analyzes actual artifacts produced during professional development. Key metrics
typically extracted in these studies include:

e Cycle Time: The duration from the first commit to PR merge.

e« Code Churn: The volume of code added, modified, or deleted.

o Acceptance Rate: The percentage of Al-generated suggestions accepted by human
developers.

However, a limitation identified in these methodologies is the difficulty in distinguish-
ing between Al-generated and human-written code without explicit metadata. As noted
by Swaraj et al. (Swaraj et al., 2025), as models improve, the statistical distribution of
Al-generated code features converges with that of human code, making detection—and thus

attribution of “productivity’—increasingly difficult.
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2.2.2.2 Qualitative and Human-Centric Approaches To address the “socio” aspect
of socio-technical systems, researchers employ qualitative methods including surveys, inter-
views, and observational studies. This approach is critical for capturing the “developer
experience” (DevEx) and cognitive load, which quantitative metrics often miss.

Ulfsnes et al. (Ulfsnes et al., 2024) and Smit et al. (Smit et al., 2024) uses these
methods to explore how developers perceive the utility of tools like GitHub Copilot. Their
methodologies often involve: 1. Semi-structured Interviews: Allowing developers to ar-
ticulate trust issues and workflow friction. 2. Likert-Scale Surveys: Quantifying perceived
productivity versus actual output. 3. Thematic Analysis: Coding interview transcripts
to identify recurring friction points, such as the “Reviewer Bottleneck.”

Brandebusemeyer (Brandebusemeyer, 2025) advances this methodology by proposing
the use of physiological sensors (wearables) to measure developer stress and focus objectively.
This represents a methodological shift from self-reported surveys to biometric data, offering

a potential solution to the subjectivity bias inherent in traditional qualitative research.

2.2.2.3 Experimental Benchmarking and Agent Evaluation The third dominant
methodology involves controlled experiments where Al agents are tasked with solving specific
software engineering problems. This is distinct from general LLM benchmarking as it focuses
on domain-specific tasks.

Zhu and Kang (Zhu & Kang, 2025) and Xia et al. (Xia et al., 2024) exemplify this
approach through the use of benchmarks like SWE-Bench. Their methodology involves: -
Task Definition: Selecting real-world GitHub issues (bug reports or feature requests). -
Agent Deployment: Running Al agents (e.g., Agentless) to generate patches. - Valida-
tion: Executing test suites to verify if the patch resolves the issue without regression.

This experimental framework allows for rigorous reproducibility but often lacks the
complexity of enterprise environments where requirements are ambiguous and human stake-

holders are involved.
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2.2.8 Analytical Metrics and Mathematical Models

A critical component of the methodology is defining the metrics used to evaluate Al
performance and impact. The literature has moved beyond simple “accuracy” toward more

nuanced probabilistic and productivity-based metrics.

2.2.3.1 Performance and Detection Metrics In the domain of security and academic
integrity, distinguishing between human and Al code is a primary methodological challenge.
Swaraj et al. (Swaraj et al., 2025) employ standard classification metrics to evaluate detection
approaches. Given the class imbalance often present in these datasets (where AI code might
be a minority or majority depending on the context), the F1-Score is preferred over simple
accuracy.

The F1-Score is defined as the harmonic mean of precision and recall:

Precision - Recall

Fl1=2-
Preciston + Recall

Where Precision and Recall are calculated based on True Positives (TP), False Posi-

tives (FP), and False Negatives (FN):

Precision — TP
recitsion — TP n Fp
TP
fecall = 7 p T FN

Methodologically, the degradation of these metrics over time serves as an indicator of
increasing model sophistication. As generative models improve, the “perplexity” gap between

human and machine text narrows, necessitating more complex detection methodologies.
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2.2.3.2 Pass@k and Probabilistic Correctness For evaluating code generation capa-

bilities, the literature frequently employs the Pass@k metric. Unlike traditional software

testing where a function either passes or fails, generative Al involves probabilistic outputs.
The Pass@k metric estimates the probability that at least one correct solution is

generated when k£ samples are produced. It is calculated as:

PassQk :=1 — ( k )

(i)

Where: - n is the total number of samples generated. - ¢ is the number of correct

samples among n. - k is the number of samples selected for evaluation.

This metric is methodologically significant for this thesis because it quantifies the
“human-in-the-loop” requirement. If £ must be large to ensure a correct solution, the cogni-
tive load on the human reviewer increases, directly contributing to the workflow bottlenecks

identified in the literature review.

Metric Category Specific Metric Application in Literature Formula/Definition

Correctness Pass@k Benchmarking code 1—("9/(%)
generation

Detection F1-Score Identifying Al-generated Harmonic mean of
code Precision/Recall

Productivity Cycle Time Workflow analysis Trerge —

Tfirsticommit

Quality Code Churn Maintenance studies Lines added +
modified + deleted
Reliability Hallucination Safety evaluation % of outputs with

Rate factual errors

32


mailto:Pass@k
mailto:Pass@k
mailto:Pass@k
mailto:Pass@k

Table 2: Summary of Analytical Metrics. This table categorizes the mathematical
and operational definitions used across the reviewed studies (Zuo et al., 2024)(Swaraj et al.,

2025)(Zhu € Kang, 2025).

2.2.4 Evaluation of Governance and Compliance Frameworks

A unique aspect of this methodology is the inclusion of regulatory and governance
frameworks as objects of analysis. As Al tools integrate into the software supply chain,
compliance with standards becomes a methodological constraint for development workflows.

This review analyzes the implementation of ISO/IEC 42001, the international
standard for AT Management Systems. As discussed by Seet (Seet, 2025) and Birogul et
al. (Birogul et al., 2025), evaluating adherence to this standard involves assessing: 1. Risk
Management: Methodologies for identifying Al-specific risks (e.g., bias, hallucination). 2.
Data Governance: Protocols for training data provenance and leakage prevention. 3.
Traceability: The ability to link Al-generated code back to its prompt and model version.

Furthermore, the methodology examines the role of Software Bill of Materials
(SBOM) in the AI era. Shukla (Shukla, 2025) and Syed (Syed, 2024) highlight that tra-
ditional SBOM methodologies must evolve to include “AI-BOMs” that account for model
weights and training datasets. This thesis evaluates how these emerging standards are re-
shaping the definition of “quality” in software engineering from purely functional correctness

to legal and operational compliance.

2.2.5 Synthesis of Workflow Integration Models

To address the central research question regarding workflow integration, this thesis
employs a comparative analysis of workflow models described in the literature. This involves
mapping the “As-Is” workflow (traditional SE) against the “To-Be” workflow (Al-augmented
SE).
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The analysis draws upon the “Human-Centered Software Engineering” framework
described by Seffah et al. (Seffah et al., 2009) and the trust adoption frameworks proposed
by Barén (Barén, 2025). The methodological step here is to identify friction points where
the introduction of Al tools disrupts established patterns.

Key dimensions of this synthesis include: - The Shift Left: How Al pushes testing
and security concerns earlier in the lifecycle (Jamili et al., 2025). - The Reviewer Role:
How the developer’s role transitions from “writer” to “verifier” (Balachandran & Fawzer,
2025)(Cihan et al., 2025). - Knowledge Transfer: How AI impacts the mentorship and

onboarding of junior developers, a gap highlighted in the literature review.

2.2.6 Limitations of the Methodology

While the narrative review approach allows for a broad synthesis, it carries inherent
limitations that must be acknowledged to contextualize the findings.

Selection Bias: Unlike a systematic review with blinded selection, the narrative
approach relies on the researcher’s selection of “representative” texts. This may inadvertently
favor high-profile studies or those from major tech companies (e.g., Microsoft /GitHub studies
on Copilot) over independent, critical research.

Rapid Obsolescence: The field of Generative Al is moving at a velocity that renders
specific benchmark results obsolete within months. For example, performance metrics for
GPT-3.5 cited in 2023 papers may not reflect the capabilities of GPT-4 or Claude 3.5 in
2025. To mitigate this, the methodology focuses on patterns of interaction and fundamental
workflow shifts rather than static performance numbers.

Lack of Standardized Reporting: As noted in the discussion of repository mining,
there is no standardized method for tagging Al-generated code in version control systems.
This forces reliance on proxy metrics or self-reported data, introducing noise into quantitative

analyses of productivity.
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Ecological Validity of Benchmarks: As highlighted by Zhu and Kang (Zhu &
Kang, 2025), benchmarks like SWE-Bench, while rigorous, may suffer from data leakage
(where the solution is in the training set) or lack the complexity of enterprise legacy systems.
This limitation means that “solved” benchmarks do not necessarily translate to “solved”

industrial problems.

2.2.7 Ethical Considerations in the Review Process

Although this thesis does not involve direct human subject experimentation, ethical
considerations remain essential in the analysis of the literature. The review critically exam-
ines how primary studies handle: - Data Privacy: Particularly in studies mining public
repositories where developer identity might be exposed. - Consent: Whether developers
using Al tools in workplace studies were fully aware of the telemetry being collected. - Bias:
How studies account for the Western-centric bias inherent in most LLM training data and
its impact on global software engineering practices.

By adhering to this multi-faceted methodological framework—combining narrative syn-
thesis, metric analysis, and critical evaluation of governance standards—this thesis aims to
provide a strong answer to how Generative Al is reshaping the professional lives of software

engineers.

2.3 Analysis and Results

[Content for Analysis and Results would follow here...|

2.3 Analysis and Results

The analysis of the selected literature reveals a complex transformation in the domain
of professional software engineering driven by Generative Artificial Intelligence (GenATI). This
section synthesizes findings from 25 primary sources, categorizing the impacts of GenAl

into five distinct analytical dimensions: developer productivity and workflow integration,
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automated quality assurance and code review, security vulnerabilities and supply chain risks,
the emergence of autonomous coding agents, and the necessity of governance frameworks.
The analysis adopts a thematic synthesis approach, aggregating empirical data, case
studies, and theoretical frameworks presented in the cited literature. Rather than viewing
these studies in isolation, this section identifies converging patterns and diverging evidence

regarding the efficacy and safety of Al-augmented development.

2.3.1 Quantitative and Qualitative Impacts on Developer Productivity

A predominant theme in the literature is the quantification of productivity gains
afforded by AI assistants such as GitHub Copilot. However, the analysis reveals a shift
from purely metric-based evaluations (e.g., lines of code per hour) to more comprehensive

assessments of “Developer Experience” (DevEx) and cognitive load.

2.3.1.1 Acceleration of Coding Tasks and Workflow Integration Research consis-
tently indicates that GenAl tools significantly accelerate the “drafting” phase of software
development. Reddy Vootukuri (Reddy Vootukuri, 2025) provides evidence regarding the
integration of GitHub Copilot Chat into the developer workflow, highlighting a reduction
in context switching. Traditionally, developers seeking documentation or syntax examples
would navigate away from their Integrated Development Environment (IDE) to browser-
based search engines or forums like Stack Overflow. The integration of chat interfaces
directly within the IDE preserves the “flow state,” a critical psychological component of
high-productivity engineering.

Smit et al. (Smit et al., 2024) analyze this phenomenon through the lens of the Soft-
ware Engineering Body of Knowledge (SWEBOK). Their findings suggest that productivity
improvements are not uniform across all knowledge areas. While code construction and

maintenance see substantial gains, requirements engineering and design phases show more
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modest improvements, indicating that current GenAl tools are optimized for implementation
rather than architectural conceptualization.

Arora (Arora, 2025) frames this transformation as a fundamental shift in the “write-
debug-maintain” cycle. The analysis suggests that while the time required to write initial
code decreases, the cognitive effort effectively shifts toward review and verification. This
aligns with the “shift-left” philosophy in DevOps, but introduces a “shift-verification” dy-

namic where the developer acts more as an editor than an author.

2.3.1.2 Physiological and Cognitive Measurements of Productivity A novel analyt-
ical perspective is introduced by Brandebusemeyer (Brandebusemeyer, 2025), who explores
the use of wearables to measure developer experience objectively. This research represents a
significant methodological advance over self-reported surveys common in earlier studies. By
correlating physiological signals (such as heart rate variability) with interactions with GenAl
tools, the study provides objective data on cognitive load.

The findings from (Brandebusemeyer, 2025) suggest that while GenAl reduces the
tedium of boilerplate code generation, it may induce intermittent spikes in cognitive load
when the AI produces hallucinated or subtly incorrect code that requires intense scrutiny.
This contradicts the simplified narrative that Al purely reduces mental effort; rather, it alters
the type of mental effort required—from recall and syntax formulation to critical analysis and
pattern recognition.

Table 1: Comparative Analysis of Productivity Assessment Methodologies

Study Methodology Key Metric Primary Finding

(Reddy Workflow Analysis Context Switching IDE integration reduces
Vootukuri, external search time.
2025)

(Smit et al., SWEBOK Mapping Task Completion Gains are highest in

2024) construction/maintenance.
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Study Methodology Key Metric Primary Finding

(BrandebusemeRBinmetric/ Wearable Physiological Stress AT alters cognitive load

2025) distribution.
(Arora, Qualitative Review Dev Cycle Time Shift from writing to
2025) reviewing/debugging.

Table 1: Overview of methodologies used to assess developer productivity in the re-

viewed literature, highlighting the shift from output metrics to cognitive metrics.

2.3.1.3 The “Vibe Coding” Phenomenon The concept of “Vibe Coding” discussed
in (Reddy Vootukuri, 2025) reflects a qualitative shift in how developers interact with code.
This term describes a workflow where the developer guides the Al through natural language
prompts based on the “vibe” or high-level intent, rather than rigorous syntactic specification.
While this lowers the barrier to entry and speeds up prototyping, the literature warns of
the potential degradation of deep code comprehension. If developers become reliant on
the “vibe” of the code being correct without understanding the underlying logic, long-term

maintainability may suffer.

2.3.2 Transformation of Code Review and Quality Assurance

The second major analytical theme focuses on how GenAl is reshaping quality as-
surance (QA) processes, particularly in the context of Pull Requests (PRs) and automated
code reviews. The literature suggests that GenAl is moving beyond simple static analysis

to semantic understanding of code changes.

2.3.2.1 Automated Pull Request Analysis The Pull Request (PR) is a bottleneck in
many modern software delivery pipelines. Zuo et al. (Zuo et al., 2024) present an empirical

study on the potential of Large Language Models (LLMs) to automatically generate PR
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titles and summaries. Their analysis demonstrates that LLMs can effectively summarize
code changes, reducing the administrative burden on developers.

The study evaluates the accuracy of generated titles against human-written baselines.
The results indicate that for small to medium-sized PRs, LLMs achieve high ROUGE scores
(a metric for evaluating automatic summarization), often capturing the intent of the change
more consistently than hurried developers. However, the performance degrades with massive
PRs containing changes across many files, highlighting the limitation of the model’s context
window.

Balachandran and Fawzer (Balachandran & Fawzer, 2025) extend this by proposing
“context-aware” code review. Unlike traditional linters that check for style violations, their
approach uses GenAl to understand the implication of a code change within the broader
system architecture. This addresses a critical gap in automated QA: the ability to detect

logical regressions that are syntactically correct but functionally flawed.

2.3.2.2 AI-Assisted vs. Manual Code Review Cihan et al. (Cihan et al., 2025) provide
a practical analysis of automated code review in industrial settings. Their findings suggest
a dichotomy in adoption: while practitioners welcome the automation of trivial checks (for-
matting, basic logic errors), there remains significant skepticism regarding the AI’s ability
to critique architectural decisions or maintainability concerns.

The study highlights a “trust gap.” Developers are willing to accept Al suggestions
for code completion (where the feedback loop is immediate) but are hesitant to delegate the
gatekeeping function of code review to an Al agent. This resistance is rooted in the fear of
“silent failures,” where an Al reviewer might confidently approve a security vulnerability.

Deloitte’s analysis (Deloitte, 2024) corroborates this, emphasizing that Al in software
quality must be viewed as an augmentation of human judgment rather than a replacement.
They argue for a “human-in-the-loop” model where Al acts as a preliminary filter, highlight-

ing potential issues for human reviewers to investigate.
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Table 2: Efficacy of AI in Code Review Tasks

Task Type AT Performance Human Trust Reference

PR Summarization High High (Zuo et al., 2024)

Syntax Checking High High (Cihan et al., 2025)

Logical Validation Moderate Moderate (Balachandran & Fawzer, 2025)
Architectural Review Low Low (Cihan et al., 2025)

Security Audit Variable Low (Deloitte, 2024)

Table 2: Synthesis of literature findings regarding the performance and developer trust

levels of Al across different code review activities.

2.3.2.3 Formalizing Testing Standards The integration of Al into testing necessi-
tates rigorous standards. Ali and Yue (Ali & Yue, 2015) discuss the formalization of the
ISO/IEC/IEEE 29119 software testing standard. The analysis indicates that existing stan-
dards require adaptation to account for the non-deterministic nature of Al-generated code.
Traditional testing relies on deterministic inputs and outputs; however, when the system un-
der test (or the test generator itself) is an Al the concept of an “expected result” becomes

fluid. This challenges the foundational axioms of regression testing.

2.3.83 Security Vulnerabilities and Supply Chain Risks

Perhaps the most critical findings in the literature concern the security implications
of widespread GenAl adoption. The analysis identifies a “new attack surface” characterized
by adversarial prompts, poisoned training data, and the rapid propagation of vulnerable

code.

2.3.3.1 Adversarial Code Generation and Detection Swaraj et al. (Swaraj et al.,
2025) present a benchmark dataset for detecting adversarial prompted Al-generated code on

platforms like Stack Overflow. Their research identifies a growing threat vector: malicious

40



actors using GenAl to generate code snippets that appear functional but contain subtle
vulnerabilities or backdoors, and then disseminating these on community platforms.

The study evaluates detection approaches, noting that standard Al-text detectors
often fail on code because programming languages have lower entropy and more rigid struc-
tures than natural language. The authors propose enhanced detection mechanisms, but the
“arms race” between generation and detection remains a significant concern. This finding
implies that the “copy-paste” culture of software development is becoming increasingly risky

as the provenance of online code snippets becomes obscured by Al generation.

2.3.3.2 Software Supply Chain Security (SSCS) The security of the software supply
chain is a recurring theme. Syed (Syed, 2024) outlines emerging trends, noting that GenAl
exacerbates existing vulnerabilities by lowering the barrier to entry for attackers. Automated
vulnerability scanning tools (often powered by Al) can be used by attackers to find zero-day
exploits just as easily as they can be used by defenders to patch them.

Aideyan et al. (Aideyan et al., 2025) focus specifically on the automotive software
supply chain. Their analysis of blockchain-reproducible builds suggests that while immutable
ledgers can track provenance, they cannot guarantee the quality of the code itself. If an Al
agent generates vulnerable code that is then signed and committed to the blockchain, the

system merely ensures the integrity of the vulnerability.

2.3.3.3 Automated SBOM Management To mitigate these risks, Shukla (Shukla,
2025) analyzes the role of Al in automating the generation and management of Software
Bill of Materials (SBOM). As software systems become increasingly complex compositions
of open-source libraries, microservices, and Al-generated snippets, maintaining an accurate
inventory is impossible manually.

The research demonstrates that Al-driven SBOM tools can parse dependencies more

deeply than static manifest files, potentially identifying “transitive vulnerabilities” (vulner-
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abilities in dependencies of dependencies). However, the accuracy of these tools is essential;
a false negative in an SBOM can leave a critical system exposed to known exploits.

Table 3: Taxonomy of AI-Driven Security Risks

Risk Category Description Source Mitigation Strategy

Adversarial Code Malicious snippets  (Swaraj et Enhanced detection benchmarks
on forums al., 2025)

Supply Chain Vulnerability (Syed, Automated scanning
propagation 2024)

Provenance Unknown code (Aideyan et  Blockchain/Reproducible builds
origin al., 2025)

Dependency Hidden library (Shukla, Al-driven SBOM generation
risks 2025)

Table 3: Classification of security risks associated with GenAl in software engineering

identified in the literature.

2.53.4 The Rise of Autonomous Software Engineering Agents

The literature reveals a trajectory from “copilots” (assistants) to “agents” (au-
tonomous actors). This section analyzes the capabilities and limitations of these agents as

reported in recent benchmarks.

2.3.4.1 Evaluation on SWE-Bench Zhu and Kang (Zhu & Kang, 2025) provide a rigor-
ous evaluation of coding agents on SWE-Bench, a benchmark designed to simulate real-world
software engineering issues. Their tool, UTBoost, highlights the gap between “solving a cod-
ing puzzle” (standard competitive programming benchmarks) and “resolving a GitHub issue”
(SWE-Bench).

The analysis shows that while agents are proficient at isolated algorithm implemen-

tation, they struggle with: 1. Repo-level context: Understanding how a change in one
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file affects a module defined three directories away. 2. Ambiguity resolution: Human
engineers clarify vague requirements; agents tend to hallucinate a specific requirement and
implement it. 3. Error recovery: When a test fails, agents often enter a loop of trying

random permutations rather than reasoning about the failure cause.

2.3.4.2 Agentless Approaches |, Xia et al. (Xia et al., 2024) present an “Agentless” ap-
proach to demystifying LLM-based software engineering. Their findings suggest that complex
agentic frameworks (with memory, planning, and tool use) often underperform compared to
simpler, well-structured prompt engineering techniques for certain classes of problems.

This counter-intuitive finding suggests that the complexity of current agent architec-
tures may be introducing noise. A simpler, deterministic process that invokes an LLM for
specific sub-tasks often yields more reliable results than a fully autonomous agent attempt-
ing to “reason” through the entire lifecycle. This has significant implications for industry

adoption, favoring modular tools over monolithic “Al employees.”

2.3.4.3 Trust and Adoption Frameworks Baréon (Barén, 2025) proposes an adoption
framework to foster trust in Al-assisted software engineering. The analysis identifies “ex-
plainability” as the primary barrier to the deployment of autonomous agents. If an agent
refactors a codebase, the human maintainer must understand why the changes were made.
The “black box” nature of neural networks conflicts with the engineering requirement for
traceability.

The framework suggests that trust is built through: 1. Transparency: The agent
must cite its sources or reasoning. 2. Controllability: The human must be able to intervene

or revert easily. 3. Reliability: Consistent performance across diverse tasks.
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2.3.5 Governance, Ethics, and Legal Compliance

The final dimension of analysis concerns the governance structures required to man-
age GenAl in professional environments. The literature indicates a rapid maturation of

standards, specifically ISO/TEC 42001.

2.3.5.1 The Role of ISO/IEC 42001 Seet (Seet, 2025) and Birogul et al. (Birogul et al.,
2025) provide extensive analysis of the ISO/IEC 42001:2023 standard for AI Management
Systems. This standard provides a framework for organizations to manage the risks and
opportunities associated with Al

The analysis of (Birogul et al., 2025) suggests that implementing ISO 42001 impacts
organizational practices by requiring: - Risk Assessments: Specific to Al (e.g., bias, hallu-
cination). - Data Governance: Ensuring training data (or RAG context) does not violate
privacy or IP laws. - Lifecycle Management: Continuous monitoring of model drift.

Rosenbaum (Rosenbaum, 2024) provides a cautionary case study (“In the Matter of
Deloitte Consulting”) highlighting the legal repercussions when Al systems fail in regulated
environments (in this case, Medicaid unwinding). This underscores the finding that “software

engineering” with Al is not just a technical discipline but a legal and ethical one.

2.3.5.2 Collaborative Dynamics and Team Structure Ulfsnes et al. (Ulfsnes et al.,
2024) analyze how GenAl alters collaborative dynamics. Their empirical insights suggest that
while individual productivity might increase, team cohesion can suffer if junior developers
rely on Al rather than mentorship from seniors. The “apprenticeship model” of software
engineering is threatened if the primary teacher is a chatbot.

Furthermore, Wang (Wang, 2025), in a case study on generative Al in design (MINI
Aceman), illustrates the potential for human-Al collaboration to enhance creativity. While

focused on CMF (Color, Material, Finish) design, the parallel to software architecture is
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relevant: Al serves as a generator of variations, while the human acts as the selector and

refiner.

2.3.6 Synthesis of Quantitative Results

To provide a consolidated view of the quantitative findings across the reviewed litera-
ture, the following synthesis aggregates reported metrics regarding performance and accuracy.
Note that direct comparison is often limited by differing baselines and experimental setups.

Mathematical Representation of Efficiency Gains Several studies quantify effi-
ciency using the ratio of task completion time. If T, ...,.; is the time taken without AI and
T, is the time taken with A, the Efficiency Gain (FE) is defined as:

T,

-T
E = mcitzclual Al % 100%

manual

While specific values vary, (Smit et al., 2024) and (Arora, 2025) imply E values
ranging from 20% to 55% for boilerplate tasks, but E approaches 0% or becomes nega-
tive (productivity loss) for complex architectural debugging due to the verification overhead
described in (Brandebusemeyer, 2025).

Accuracy Metrics in Automated Tasks For classification and detection tasks
(e.g., adversarial prompt detection in (Swaraj et al., 2025)), performance is typically evalu-

ated using Precision (P) and Recall (R):
TP TP
P = e ——
TP+ FP’ B=7p + FN

Swaraj et al. (Swaraj et al., 2025) report that standard text detectors achieve subop-
timal Fl-scores (harmonic mean of P and R) on code datasets, necessitating the specialized

approaches proposed in their benchmark.
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2.3.7 Summary of Analysis

The analysis of the 25 cited sources paints a picture of a discipline in transition. The
“Results” of this literature review can be summarized as follows: 1. Productivity is Real
but Nuanced: Gains are concentrated in coding and maintenance, with a shift in cognitive
load from generation to verification (Reddy Vootukuri, 2025)(Smit et al., 2024)(Brandebuse-
meyer, 2025). 2. Quality Assurance is Automating: PR summaries and context-aware
reviews are viable, but human oversight remains essential for architecture and security (Zuo
et al., 2024)(Balachandran & Fawzer, 2025). 3. Security Risks are Escalating: The
proliferation of Al-generated code introduces supply chain risks and adversarial vectors that
current tools struggle to detect (Swaraj et al., 2025)(Shukla, 2025). 4. Autonomy is
Immature: While agents show promise, they currently lack the robustness required for un-
supervised repo-level engineering (Zhu & Kang, 2025)(Xia et al., 2024). 5. Governance is
Mandatory: The release of ISO 42001 signals the end of the “wild west” era of Al adoption;
compliance and risk management are now central to software engineering management (Seet,
2025)(Birogul et al., 2025).

These findings set the stage for the Discussion section, which will interpret these

results in the context of the broader future of the software engineering profession.

2.4 Discussion

[Content for Discussion would follow here...]

2.4 Discussion

The synthesis of literature presented in section 2.3 reveals a software engineering
environment undergoing a profound transformation, characterized not merely by increased
speed but by a fundamental restructuring of the development lifecycle. As established in the

literature review (section 2.1), the integration of Generative Artificial Intelligence (GenAl)

46



was initially framed through the lens of productivity enhancement and code completion.
However, the analysis of recent empirical studies suggests a more complex reality where the
cognitive burden has shifted from syntax generation to semantic verification. This section
interprets these findings, contrasting them with the theoretical frameworks introduced in
section 2.1, and explores the broader implications for quality assurance, security, governance,

and the future of the engineering profession.

2.4.1 The Cognitive Shift: From Authorship to Verification

The most significant finding emerging from the analysis is the redefinition of “de-
veloper productivity”” While early theoretical models discussed in section 2.1 anticipated
linear efficiency gains, the empirical evidence synthesizes a non-linear reality dominated by

verification overhead.

2.4.1.1 The Verification Bottleneck

The quantitative results analyzed in section 2.3 demonstrate that while code gener-
ation speed has increased, the time required for code review and debugging has expanded
proportionately. This aligns with the “Verification Latency” phenomenon observed in recent
studies. Brandebusemeyer (Brandebusemeyer, 2025) provides critical empirical data using
wearables to measure developer cognitive load, indicating that the mental effort required to
verify Al-generated code often exceeds the effort required to write it manually, particularly
for complex architectural tasks. This confirms the limitations of purely speed-based metrics.

The implications of this shift are profound for the Human-Centered Software En-
gineering (HCSE) framework discussed in section 2.1 ((Seffah et al., 2009)). The HCSE
model traditionally focuses on the interaction between the human and the interface; how-
ever, GenAl introduces a “third agent” into this dyad—the probabilistic model. The developer

is no longer the sole author but rather an editor of stochastic outputs. This transition creates
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a “Reviewer Bottleneck,” where the volume of generated code outpaces the human capacity
to critically evaluate its correctness, security, and maintainability.

Table 1 illustrates the shift in cognitive responsibilities identified across the analyzed

literature.

Domain Traditional Workflow Al-Augmented Workflow Implication

Cognition Synthesis & Logic Analysis & Verification Higher mental
fatigue

Output Low volume, high intent High volume, variable intent Review
saturation

Skill Syntax mastery Prompting & Debugging Skill profile shift

Risk Syntax errors Hallucination & Logic bugs Subtle failure
modes

Table 1: Comparison of Cognitive Demands in Traditional vs. AI-Augmented Engi-
neering based on (Brandebusemeyer, 2025) and (Reddy Vootukuri, 2025).

The productivity gains reported by Reddy Vootukuri (Reddy Vootukuri, 2025) and
Smit et al. (Smit et al., 2024) must therefore be interpreted with caution. While “vibe
coding” or flow-state maintenance is a reported benefit, it often masks the downstream
costs of technical debt accumulation. If developers accept Al suggestions without rigorous
verification—a tendency exacerbated by automation bias-the long-term maintainability of
the codebase may degrade. This validates the concerns raised in section 2.1 regarding the

potential for a “quality crisis” hidden behind short-term velocity metrics.

2.4.1.2 Impact on Junior Developer Development

A critical theoretical implication of this cognitive shift is the potential erosion of
learning pathways for junior engineers. The literature suggests that the struggle with syntax

and basic logic—the very tasks now automated by tools described in (Arora, 2025)—is essential
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for building the mental models required for high-level architectural reasoning. If junior
developers rely on GenAl for code generation, they may bypass the “productive struggle”
necessary for skill acquisition. While not explicitly longitudinal, the snapshot provided by
Ulfsnes et al. (Ulfsnes et al., 2024) regarding collaboration patterns suggests that reliance on

AT might reduce peer-to-peer mentorship interactions, isolating junior developers in a loop

of prompt-response rather than human-guided learning.

2.4.2 The Evolution of Automated Quality Assurance

The findings in section 2.3 regarding automated pull request (PR) analysis indicate
that GenAl is moving beyond code generation into the field of quality assurance (QA). This

represents a maturation of the technology from a “writer” to a “reviewer.”

2.4.2.1 Context-Aware Review Mechanisms

Traditional static analysis tools (linters) focus on syntax and style. In contrast, the
context-aware review capabilities described by Balachandran and Fawzer (Balachandran &
Fawzer, 2025) and Cihan et al. (Cihan et al., 2025) represent a leap forward in semantic
analysis. These tools can interpret the intent of a code change, not just its structure. The
ability to generate automatic PR titles and summaries, as analyzed by Zuo et al. (Zuo et al.,
2024), streamlines the administrative aspect of code review, theoretically freeing up human
reviewers to focus on logic and architecture.

However, the literature warns against over-reliance on these automated reviewers.
The “hallucination” risk inherent in LLMs means that an Al reviewer might confidently
approve flawed code or flag correct code as erroneous. The study by Deloitte (Deloitte, 2024)
emphasizes that while Al can augment the QA process, it cannot yet replace the “human in
the loop” for critical systems. The nuance here is that Al is excellent at identifying patterns
and inconsistencies but lacks the “grounding” in business requirements that a human reviewer

possesses.
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2.4.2.2 The Paradozx of Automated PR Generation

There is a paradoxical risk identified in the synthesis of Zuo et al. (Zuo et al., 2024) and
Cihan et al. (Cihan et al., 2025). As developers use Al to generate code, and then use Al to
generate the PR description, and potentially use Al to review the PR, the entire pipeline risks
becoming a “closed loop” of Al artifacts with diminishing human oversight. This alignment
of Al-generated inputs and outputs could lead to “drift,” where the software deviates from
user needs or architectural standards without detection, as the human verifier is gradually

pushed out of the loop by the seeming coherence of the Al-generated documentation.

2.4.3 Security Implications and the Supply Chain

The analysis in section 2.3 highlighted security as a primary area of concern. The
literature reviewed in this section paints a disturbing picture of an escalating arms race

between Al-assisted defense and Al-enabled attacks.

2.4.3.1 The Challenge of Adversarial Code

The findings by Swaraj et al. (Swaraj et al., 2025) regarding adversarial prompted
code on platforms like Stack Overflow are particularly alarming. The inability of standard
text detectors to reliably identify Al-generated code means that vulnerable or malicious
snippets can permeate the software supply chain undetected. This directly challenges the
assumption in earlier literature that open-source repositories are self-correcting ecosystems.
If the volume of Al-generated noise overwhelms the community’s capacity to curate content,

the reliability of shared knowledge bases degrades.

2.4.3.2 Supply Chain Transparency and SBOMs

To mitigate these risks, the literature points toward rigorous supply chain manage-

ment. The automated generation of Software Bill of Materials (SBOM) discussed by Shukla
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(Shukla, 2025) becomes not just a compliance requirement but a security necessity. In an
era where code snippets are synthesized from vast, opaque training datasets, understanding
the provenance of software components is important.

Syed (Syed, 2024) and Aideyan et al. (Aideyan et al., 2025) extend this argument to
the automotive and critical infrastructure sectors, suggesting that the integrity of the soft-
ware supply chain is now a matter of public safety. The “black box” nature of GenAl models
makes provenance tracking difficult; if a model generates a vulnerability, tracing it back to
a specific training example is often impossible. This necessitates a shift from “preventing”
vulnerabilities in training data (which is difficult) to “detecting” and “managing” them via
strong SBOMs and post-deployment monitoring.

Table 2 summarizes the security vectors introduced by GenAl and the corresponding

mitigation strategies found in the literature.

Threat Vector Description Mitigation Strategy Source
Adversarial Code Malicious snippets  Specialized detection (Swaraj et
in training benchmarks al., 2025)
data/output
Supply Chain Unknown origin of  AI-Driven SBOM generation (Shukla,
Opacity generated 2025)
dependencies
Vulnerability AT suggesting Blockchain-reproducible builds  (Aideyan et
Injection insecure patterns al., 2025)
Trust Deficit Lack of confidence  Adoption frameworks/ISO (Barén,
in AT outputs 42001 2025)

Table 2: Security Threats and Mitigations in Al-Augmented Software Engineering.
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2.4.4 Governance, Compliance, and ISO 42001

Perhaps the most mature development identified in the literature is the transition
from experimental adoption to regulated governance. The release of ISO/IEC 42001:2023
represents a watershed moment for the industry, signaling the end of the “wild west” era of

AT adoption.

2.4.4.1 The Role of Standardization

As discussed in section 2.3, the works of Seet (Seet, 2025) and Birogul et al. (Birogul
et al., 2025) emphasize that Al governance is no longer optional. ISO 42001 provides a
framework for managing the risks associated with Al systems, requiring organizations to
implement controls around data quality, model bias, and system transparency. This aligns
with the formalization trends seen in other engineering disciplines (e.g., ISO 29119 for testing
(Ali & Yue, 2015)).

The implications of this standard are far-reaching. Organizations can no longer deploy
GenAl tools like Copilot without a formal policy regarding data privacy (input leakage)
and code ownership (output rights). The legal analysis by Rosenbaum (Rosenbaum, 2024)
regarding the Deloitte/Medicaid case serves as a stark warning: when Al systems fail in
high-stakes environments, the liability falls on the organization that deployed them, not the
algorithm. This underscores the necessity of the “Human-in-the-Loop” not just for quality,

but for legal accountability.

2.4.4.2 Trust Frameworks

Bar6n (Barén, 2025) proposes an adoption framework to foster trust, arguing that
technical excellence is insufficient for adoption. Trust is built through transparency, reli-
ability, and compliance. The integration of GenAl into the software development lifecycle

(SDLC) requires a “Trust Architecture” where developers, managers, and stakeholders under-
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stand the limitations and provenance of the Al tools they use. This framework addresses the
psychological barrier to adoption—developers will not use tools they do not trust, or worse,

they will use them blindly without understanding the risks.

2.4.5 The Limits of Autonomy: Agents vs. Assistants

A critical distinction emerging from the comparison of findings in section 2.3 is the gap

between “Assistants” (like GitHub Copilot) and “Agents” (autonomous software engineers).

2.4.5.1 The Robustness Gap

While assistants have found widespread adoption (Reddy Vootukuri, 2025), au-
tonomous agents remain in the experimental phase. The evaluation of coding agents on
benchmarks like SWE-bench by Zhu and Kang (Zhu & Kang, 2025) and Xia et al. (Xia et
al., 2024) reveals a significant “robustness gap.” Agents often fail to understand the broader
context of a repository, making changes that are locally correct (syntactically valid) but
globally destructive (breaking dependencies or architectural constraints).

This finding contradicts the more optimistic projections of fully autonomous software
engineering often seen in grey literature. The academic consensus suggests that for the
foreseeable future, GenAl will function as a “force multiplier” for human intelligence rather
than a replacement. The complexity of maintaining large-scale, legacy codebases requires
a level of contextual understanding and long-term planning that current LLM-based agents

struggle to achieve.

2.4.5.2 Cloud and Scale Implications

The deployment of these intelligent systems also introduces infrastructure challenges.
Jamili et al. (Jamili et al., 2025) discuss the framework for intelligent cloud systems required
to support secure and sustainable Al at scale. Running autonomous agents that continuously

analyze and refactor code requires significant computational resources, raising questions
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about the environmental impact and cost-benefit ratio of autonomous engineering compared

to human-guided development.

2.4.6 Synthesis with Research Gaps

Referring back to the research gaps identified in section 2.1, the findings from this
review address several key areas while highlighting new ones.

1. Gap: Lack of Empirical Data on Workflow Integration.

o Addressed: Studies by Ulfsnes et al. (Ulfsnes et al., 2024) and Reddy Vootukuri (Reddy
Vootukuri, 2025) provide concrete empirical data on how developers actually integrate
these tools, moving beyond theoretical speculation.

2. Gap: Understanding the “Human” Element.

o Addressed: Brandebusemeyer (Brandebusemeyer, 2025) and Seffah et al. (Seffah et al.,
2009) bridge the gap between software engineering and human-computer interaction,
quantifying the cognitive load of Al interaction.

3. Gap: Security in the AI Era.

o Addressed: The work on adversarial prompts (Swaraj et al., 2025) and SBOMs (Shukla,
2025) establishes a baseline for security research in this domain.

However, a significant gap remains regarding the longitudinal impact of these tools.
Most studies cited are cross-sectional or short-term experiments. The industry lacks data on
how codebases maintained primarily by Al evolve over 3-5 years. Does the “drift” mentioned

in section 2.4.2 lead to unmaintainable legacy systems? This remains an open question.

2.4.7 Limitations of the Reviewed Literature

While the reviewed studies provide valuable insights, several limitations must be

acknowledged to contextualize the discussion.
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2.4.7.1 Predominance of Short-Term Studies

As noted above, the majority of the empirical evidence (Zuo et al., 2024)(Reddy
Vootukuri, 2025)(Zhu & Kang, 2025) relies on short-term observations, snapshot surveys,
or controlled benchmarks (like SWE-bench). There is a scarcity of longitudinal studies
that track the lifecycle of Al-generated code from inception to deprecation. Consequently,
conclusions regarding “maintainability” are largely theoretical or based on proxy metrics

rather than historical data.

2.4.7.2 Bias Toward Quantitative Metrics

Much of the literature focuses on quantitative metrics such as lines of code, commit
frequency, or task completion time (Smit et al., 2024)(Brandebusemeyer, 2025). While
valuable, these metrics often fail to capture the qualitative aspects of software engineering,
such as creativity, architectural elegance, and user satisfaction. The study by Wang (Wang,
2025) on generative design touches on this, but in the field of pure code, “quality” remains

a difficult attribute to measure at scale.

2.4.7.8 Rapid Obsolescence

The field of GenAl is moving so rapidly that literature published in early 2024 may al-
ready describe outdated model capabilities. For instance, the limitations of agents described
by Xia et al. (Xia et al., 2024) might be overcome by the next generation of models (e.g.,
GPT-5 or equivalent) before this review is fully disseminated. This necessitates a continu-
ous review process, as static literature reviews struggle to keep pace with the technology’s

velocity.
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2.4.8 Future Research Directions

Based on the interpretation of findings and the identified limitations, several avenues

for future research emerge.

2.4.8.1 The “Junior Developer Crisis”

Research is urgently needed to investigate the long-term impact of Al on skill acqui-
sition. Longitudinal studies tracking cohorts of junior developers—one group using heavy Al
assistance, one using limited assistance-would provide critical data on whether these tools

inhibit or accelerate the development of deep technical expertise.

2.4.8.2 AlI-Specific Technical Debt

Future work should define and measure “Al Technical Debt.” Researchers need to
develop metrics to quantify the complexity and readability of Al-generated code compared
to human-written code over time. Does Al code degenerate faster? Does it require more
frequent refactoring? Answering these questions requires analyzing repository history in

organizations that have adopted GenAl at scale.

2.4.8.8 Human-Agent Teaming Protocols

As agents become more capable, research must shift from “tool adoption” to “teaming
protocols.” How do humans and autonomous agents negotiate conflict? If an agent refactors
code that the human prefers to keep legacy, whose preference takes precedence? Developing
governance protocols for this interaction, building on the work of Bar6n (Barén, 2025) and

ISO 42001 (Seet, 2025), will be essential.
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2.4.9 Conclusion of Discussion

The integration of GenAl into professional software engineering is not a simple au-
tomation story; it is a complex reconfiguration of the socio-technical system of development.
The literature confirms that while productivity gains are real, they are achieved by shifting
effort from creation to verification. This shift introduces new risks in security and quality
assurance that require rigorous governance and “human-in-the-loop” oversight.

The findings from the cited literature (Reddy Vootukuri, 2025)(Brandebusemeyer,
2025)(Seet, 2025) collectively suggest that the future of software engineering will not be
defined by the ability to write code, but by the ability to orchestrate, verify, and govern the Al
systems that write it. The profession is evolving from “coding” to “system specification and
verification,” validating the theoretical trajectory toward higher-level abstraction discussed in
section 2.1. As organizations navigate this transition, the focus must remain on the principles
of Human-Centered Software Engineering (Seffah et al., 2009), ensuring that these powerful
tools serve to augment human capability rather than replace the critical thinking that defines

the engineering discipline.
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3. Conclusion

The integration of Generative Artificial Intelligence (GenAl) into professional soft-
ware engineering workflows represents a transformation far more profound than a mere up-
grade in tooling efficiency. This thesis has explored the complex impact of GenAl, moving
beyond the initial hype of code completion to analyze the structural changes in how software
is conceived, constructed, verified, and maintained. The research demonstrates that the in-
dustry is currently navigating a critical inflection point: a transition from syntax-focused
manual coding to semantic-focused Al orchestration. This conclusion synthesizes the pri-
mary findings regarding adoption patterns, productivity shifts, and governance challenges,

while outlining the theoretical and practical implications for the future of the discipline.

3.1 Summary of Findings

The investigation into the adoption and utilization of GenAl by professional software
engineers reveals a environment characterized by rapid integration but uneven maturity. The
core findings of this research can be categorized into three distinct dimensions: the evolution
of the developer role, the automation of peripheral engineering tasks, and the emergence of
new security paradigms.

4

First, the primary function of the software engineer is shifting from “writer” to “re-
viewer.” As evidenced by the widespread adoption of tools like GitHub Copilot Chat (Reddy
Vootukuri, 2025) and various code assistants (Arora, 2025), developers are increasingly spend-
ing their cognitive energy on prompt engineering and code verification rather than syntactic
construction. This shift validates the “synthetic pair programmer” model, where Al serves
not merely as an autocomplete function but as an active collaborator in the development
lifecycle (Ulfsnes et al., 2024). However, this transition is not without friction; trust remains

a volatile variable, heavily dependent on the transparency and explainability of the Al’s

suggestions (Barén, 2025).
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Second, the scope of automation has expanded beyond simple code generation to
encompass complex, context-aware engineering tasks. Recent advancements have enabled
Large Language Models (LLMs) to automate the generation of Pull Request (PR) titles and
descriptions with high accuracy, streamlining the code review process and reducing admin-
istrative overhead (Zuo et al., 2024). Furthermore, the industry is witnessing a divergence
in automated approaches, characterized by the debate between agent-based architectures
and “agentless” approaches that uses simple, two-phase processes for software engineering
tasks (Xia et al., 2024). This indicates that while the capability for autonomy exists, the
industry is still determining the optimal balance between complex autonomous agents and
deterministic, controllable workflows.

Third, the proliferation of Al-generated code has necessitated a rigorous overhaul of
quality assurance and security protocols. The ease of generating code has led to a volume
of output that challenges traditional manual review processes (Cihan et al., 2025). Conse-
quently, there is a rising necessity for automated, context-aware code review tools that can
integrate GenAl to filter and analyze contributions before they reach human reviewers (Bal-
achandran & Fawzer, 2025). Simultaneously, the security environment has darkened with
the potential for adversarial prompting, where malicious actors manipulate Al to inject vul-
nerabilities, requiring new benchmark datasets and detection mechanisms for Al-generated

code on platforms like Stack Overflow (Swaraj et al., 2025).

3.2 Theoretical Implications

This research contributes significantly to the theoretical understanding of Human-
Centered Software Engineering (HCSE). Historically, HCSE frameworks focused on the
usability of the software being created; however, the introduction of GenAl necessitates

applying HCSE principles to the development tools themselves (Seffah et al., 2009).
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3.2.1 Cognitive Load Redistribution

The findings suggest a fundamental redistribution of cognitive load. Traditional soft-
ware engineering theory posits that the “hard” work lies in the translation of abstract logic
into concrete syntax. GenAl inverts this. The syntax generation becomes trivial, while the
evaluation of semantic correctness becomes the primary cognitive burden. This aligns with
recent studies using wearables to measure developer experience, which indicate that objec-
tive physiological measures are needed to understand the true impact of Al interactions on
developer stress and flow states (Brandebusemeyer, 2025). The theoretical model of the de-
veloper must therefore evolve to include “verification literacy”—the ability to quickly discern

subtle logic errors in syntactically perfect code—as a core competency.

3.2.2 The Trust-Adoption Cycle

The research also refines the theoretical models of technology adoption in engineer-
ing contexts. The adoption of GenAl does not follow a linear path based solely on utility.
Instead, it follows a “Trust-Adoption Cycle” where adoption is contingent on the establish-
ment of trust frameworks (Barén, 2025). Unlike deterministic compilers where an error is
explicit, probabilistic AI models introduce ambiguity. Therefore, theoretical frameworks for
Al-assisted engineering must incorporate uncertainty management as a central component

of the development lifecycle.

3.3 Practical Implications for Industry

The transition to Al-augmented software engineering carries profound practical im-
plications for organizations, practitioners, and policymakers. The era of ad-hoc adoption is

ending, replaced by a need for structured governance and strategic integration.
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3.53.1 Governance and Standardization

As GenAl becomes critical infrastructure, organizations can no longer rely on infor-
mal usage policies. The emergence of standards such as ISO/IEC 42001:2023 represents a
maturation of the field, providing a necessary framework for managing Al systems respon-
sibly (Seet, 2025). Implementing such standards is important for mitigating legal risks and
ensuring that Al adoption aligns with organizational values and compliance requirements
(Birogul et al., 2025). Companies must move from viewing Al as a developer productivity

perk to viewing it as a managed asset subject to rigorous audit trails and quality controls

(Deloitte, 2024).

3.3.2 Supply Chain Security

The practical definition of “secure code” has expanded. With the integration of Al,
the software supply chain now includes the provenance of the data used to train models and
the integrity of the prompts used to generate code. Automated generation and management
of Software Bill of Materials (SBOMs) have become essential to track the lineage of Al-
generated components and open-source dependencies (Shukla, 2025). This is particularly
critical in high-stakes industries like automotive software, where supply chain vulnerabilities
can have physical safety implications (Aideyan et al., 2025). Security teams must adapt to
detect “hallucinated packages” and subtle logic flaws that escape traditional static analysis

tools (Syed, 2024).

3.3.3 Redefining Productivity Metrics

The findings indicate that traditional metrics like “lines of code” (LOC) are rendered
obsolete by GenAl. When a developer can generate hundreds of lines of boilerplate in seconds,
LOC becomes a measure of Al latency rather than human productivity. Industry leaders
must pivot toward outcome-based metrics, such as “time to value,” “bug density per feature,”

and “review cycle time” (Smit et al., 2024). The focus must shift from the quantity of code
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produced to the quality of the architectural decisions made and the robustness of the system

design.

Table 3.1 summarizes the key shifts identified in this research and their direct impli-

cations for industry stakeholders.

Domain Traditional State Al-Augmented State  Industry Implication
Workflow Manual coding & Prompting & Shift hiring focus to
lookup verification architectural
thinking
Review Human-only review Al-filtered + Human Implement
review context-aware
automated review
tools (Balachandran
& Fawzer, 2025)
Security Vulnerability Adversarial defense Mandate Al-specific
scanning SBOMs &
provenance tracking
(Shukla, 2025)
Governance Internal policy ISO 42001 Standards Formalize Al
management systems
(AIMS) (Seet, 2025)
Metrics Lines of Code / Acceptance Rate / Adopt objective

Velocity

Quality

measures of
developer experience
(Brandebusemeyer,

2025)

Table 3.1: Strategic Implications of GenAlI Adoption in Software Engineering.
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The table above illustrates the comprehensive nature of the required transformation.
Organizations that attempt to layer Al tools on top of traditional workflows without adjust-
ing their governance, security, and metric systems are likely to experience increased technical

debt rather than genuine productivity gains.

3.4 Limitations of the Study

While this research provides a comprehensive overview of the current state of GenAl in
software engineering, several limitations must be acknowledged. First, the field is evolving at
a velocity that outpaces the traditional academic publication cycle. Capabilities of models
discussed (e.g., GPT-4 class models) may be superseded by next-generation architectures
during the dissemination of this thesis.

Second, much of the data regarding productivity gains relies on self-reported metrics
or controlled experiments (such as SWE-bench evaluations) (Zhu & Kang, 2025). While
valuable, these environments do not fully capture the complexity of legacy codebases and
the “messy” reality of enterprise software development. The long-term maintenance costs of
Al-generated code remain largely theoretical, as these tools have not been in widespread use
long enough to observe the full lifecycle of Al-heavy codebases over 5-10 years.

Third, the scope of this research heavily emphasizes text-based coding tasks. While
emerging areas like generative design for physical products (e.g., smart cabin design) (Wang,
2025) and cloud system orchestration (Jamili et al., 2025) were touched upon, the primary
focus remained on source code generation. The impact of multimodal models that can reason
across diagrams, code, and Ul mockups simultaneously represents a frontier that was only

partially explored.
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3.5 Future Research Directions

The findings of this thesis point toward several critical avenues for future research. As
the novelty of code generation fades, the focus must shift toward the long-term sustainability

of Al-centric development ecosystems.

3.5.1 The Long-Term Impact on Skill Acquisition

A pressing question remains regarding the pedagogy of software engineering. If junior
developers rely on Al for code synthesis, do they fail to develop the deep mental models
required for debugging and architecture? Future longitudinal studies are needed to track the

skill progression of “Al-native” developers versus those trained in traditional methods.

3.5.2 Autonomous Agents vs. Human-in-the-Loop

The dichotomy between “agentless” approaches and fully autonomous agents requires
rigorous empirical testing. While current research validates the efficacy of simple, agentless
workflows for specific tasks (Xia et al., 2024), the potential for autonomous agents to handle
ambiguous, multi-step refactoring tasks remains high. Future work should evaluate the error

rates and “drift” of autonomous agents in production environments over extended periods.

3.5.8 Legal and Ethical Compliance

As governments impose stricter regulations on Al, the intersection of software engi-
neering and law will become a fertile ground for research. Investigating how technical teams
can implement “compliance by design” using GenAl tools—ensuring that generated code au-
tomatically adheres to standards like ISO 42001 or GDPR-will be essential (Rosenbaum,

2024)(Birogul et al., 2025).
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3.5.4 Sustainable AI Computing

Finally, the environmental impact of widespread Al adoption in development cannot
be ignored. The computational cost of running massive inference models for every line of code
suggests a need for “sustainable AI” frameworks. Research into optimizing cloud systems for
efficient Al orchestration (Jamili et al., 2025) will be vital to ensure that the productivity
gains of GenAlI do not come at an unacceptable environmental cost.

Table 3.2 outlines a proposed agenda for future research based on the gaps identified

in this study.

Methodological

Research Theme Key Question Approach Potential Impact

Pedagogy Does AI hinder deep  Longitudinal skill Reform of CS
learning? tracking education

Autonomy Agentless vs. Agents? Comparative Optimization of tool

benchmarks design

Reliability Long-term code Repository mining TCO models for Al
maintainability (34 years) code

Ethics Automated Case studies on ISO  Risk reduction
compliance? 42001 frameworks

Table 3.2: Proposed Future Research Agenda.

3.6 Final Remarks

The integration of Generative Al into software engineering is not a transient trend but
a foundational restructuring of the discipline. This thesis has demonstrated that while the
productivity benefits are tangible, they are accompanied by significant challenges in trust,
security, and governance. The “black box” nature of deep learning models introduces a layer

of probabilistic uncertainty into a field that has historically prized deterministic precision.
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Success in this new era will not be defined by which organization accesses the most
powerful model, but by which organization best adapts its human processes to govern these
powerful tools. The future software engineer will not merely be a writer of code, but an
architect of systems, a guardian of quality, and an orchestrator of artificial intelligence. As
we move forward, the synergy between human creativity and artificial efficiency will define
the next generation of software innovation, provided that we remain vigilant regarding the
quality, security, and ethical implications of the code we co-create with machines. The shift

is inevitable; the outcome depends on the rigor with which we manage the transition.
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4. Appendices

4.1 Appendix A: Conceptual Framework for AI-Augmented Soft-

ware Engineering

This appendix details the theoretical models developed and utilized throughout this
thesis to analyze the integration of Generative Al (GenAl) into professional software engineer-
ing workflows. The framework synthesizes Human-Centered Software Engineering (HCSE)
principles with modern Al-agent interaction models to describe the shift from linear devel-

opment lifecycles to recursive, Al-assisted loops.

4.1.1 The Cognitive Shift Model

The primary conceptual contribution of this research is the “Cognitive Shift Model,”
which illustrates the transition of the software engineer’s role from a primary generator of
syntax to a verifier of semantic intent. This model draws heavily on the foundational work of
Seffah et al. Regarding HCSE (Seffah et al., 2009), adapting it for the era of Large Language
Models (LLMs).

The following table contrasts the cognitive demands and workflow steps of the Tradi-

tional Development Lifecycle (TDL) against the Al-Augmented Lifecycle (AAL).

Lifecycle Traditional Cognitive AT-Augmented Dominant Interaction

Phase Load Cognitive Load Mode

Requirements  High: Abstract to Medium: Prompt Natural Language
Concrete Formulation Prompting

Coding High: Syntax Low: Syntax Review & Refinement
Generation Verification

Debugging High: Root Cause Medium: Hypothesis Interactive Chat

Analysis

Validation
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Lifecycle Traditional Cognitive Al-Augmented Dominant Interaction

Phase Load Cognitive Load Mode

Testing High: Test Case Low: Coverage Analysis Automated Generation
Creation

Maintenance High: Legacy Medium: Context Semantic Search
Comprehension Retrieval

Table A1: Comparison of Cognitive Loads in Traditional vs. AI-Augmented Lifecycles.
Adapted from (Ulfsnes et al., 2024) and (Seffah et al., 2009).

In the Traditional Development Lifecycle, the engineer bears the cognitive burden
of translating abstract requirements directly into syntactically correct code. This process
requires maintaining a high “working memory” of the codebase’s structure and language-
specific syntax. However, in the AI-Augmented Lifecycle, the cognitive load shifts. As noted
by Ulfsnes et al. (Ulfsnes et al., 2024), the interaction moves toward “prompt engineering”
and output verification. The engineer no longer recalls syntax from memory but instead
evaluates the Al’s suggestion for correctness, security, and context.

This shift necessitates a re-evaluation of developer productivity. Traditional metrics
focus on lines of code (LOC) or commit frequency. However, under the Cognitive Shift
Model, productivity is better understood through the lens of “decision density”-the number
of architectural or logical decisions a developer makes per hour, rather than the volume of
text produced. Brandebusemeyer (Brandebusemeyer, 2025) suggests that measuring this
experience requires novel approaches, such as wearable technology or advanced telemetry, to

capture the physiological and objective reality of this new workflow.

4.1.2 The Trust and Adoption Matriz

Building on the work of Barén (Barén, 2025), this framework incorporates a Trust

and Adoption Matrix to explain the variance in GenAl tool usage across different engineering
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seniority levels and organizational types. Adoption is not merely a function of tool availability

but a complex interplay of trust, perceived utility, and institutional governance.

Adoption Stage Key Driver Primary Barrier Governance Focus
Experimental Individual Curiosity = Lack of Access Shadow AI Prevention
Assisted Productivity Gains Accuracy/Hallucination Data Privacy
Augmented Workflow Integration Context Limitations Quality Assurance

Autonomous Agentic Delegation Accountability /Trust Liability & Ethics

Table A2: Stages of Al Adoption in Software Engineering Organizations. Based on
(Baron, 2025) and (Xia et al., 2024).

The transition from “Assisted” to “Augmented” represents the current current for
most mature engineering organizations. In the Assisted stage, tools like GitHub Copilot are
used primarily for autocomplete functions (Reddy Vootukuri, 2025). The move to the Aug-
mented stage involves deep integration into the CI/CD pipeline, where Al tools automatically
generate pull request titles, summaries, and code reviews (Zuo et al., 2024)(Balachandran &
Fawzer, 2025).

The final stage, “Autonomous,” involves the deployment of agentic workflows where
LLMs plan and execute multi-step engineering tasks with minimal human intervention. Re-
search into “Agentless” frameworks and rigorous evaluation benchmarks like SWE-bench
(Zhu & Kang, 2025)(Xia et al., 2024) highlights that while we are approaching this stage,
significant barriers regarding trust and error propagation remain. The Trust and Adoption
Matrix suggests that organizations cannot successfully leap to autonomous agents without

first establishing strong governance protocols in the earlier stages.
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4.2 Appendix B: Supplementary Data and Metrics

This appendix provides detailed supplementary data supporting the analysis of pro-
ductivity, security, and code quality in Al-augmented software engineering. The data syn-

thesizes findings from multiple empirical studies cited in the main body of the thesis.

4.2.1 Productivity and Workflow Metrics

The impact of GenAl on developer productivity is complex. The following data
breakdown illustrates the dichotomy between “perceived productivity” (how fast developers

feel they are working) and “objective throughput” (actual system output).

Traditional
Metric Category Benchmark Al-Assisted Result  Impact Factor  Citation
Task Baseline (1.0x) 1.26x - 1.55x Faster High Positive  (Smit et
Completion al., 2024)
Code Review 60-90 mins/PR 30-45 mins/PR High Positive  (Balachandran
Time & Fawzer,
2025)
Context Switch ~ 15-20 mins recovery Reduced Medium (Reddy
interruption Positive Vootukuri,
2025)
Debugging Time High variance Standardized High Positive  (Arora,
reduction 2025)

Table B1: Aggregated Productivity Metrics from Empirical Studies.

The data indicates a consistent reduction in time-on-task for routine coding activities.
Smit et al. (Smit et al., 2024) report significant gains in task completion velocity when
developers uses tools like GitHub Copilot. Specifically, the “blank page problem”—the initial

inertia of starting a new module—is virtually eliminated. Furthermore, Balachandran and
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Fawzer (Balachandran & Fawzer, 2025) demonstrate that Al-integrated code review tools
significantly reduce the latency of Pull Request (PR) cycles by automating the generation
of summaries and initial vulnerability scans.

However, these gains are not uniform. Zuo et al. (Zuo et al., 2024) emphasize that
while AT can generate PR titles and descriptions effectively, the accuracy of these genera-
tions relies heavily on the quality of the diffs and the context provided. If the underlying
code changes are complex or poorly structured, the AI’s summarization capabilities degrade,

potentially requiring more time for human correction than manual writing would have taken.

4.2.2 Security and Supply Chain Vulnerabilities

A critical finding of this thesis is the introduction of new attack vectors through Al-
generated code. The data below categorizes the prevalence of specific security risks identified

in Al-assisted development environments.

Risk Category Description Detection Difficulty Mitigation Strategy
Adversarial Code Maliciously prompted injection High Enhanced Benchmarks
Hallucination Non-existent libraries/APIs Medium SBOM Verification
Supply Chain Dependency confusion High Blockchain/SBOM
Data Leakage Training data exposure Medium Local LLM Hosting

Table B2: Taxonomy of Al-Introduced Security Risks. Sources: (Swaraj et al., 2025),
(Shukla, 2025), (Aideyan et al., 2025).

Swaraj et al. (Swaraj et al., 2025) provide a benchmark dataset revealing that adver-
sarial prompting can trick generic LLMs into generating insecure code patterns that bypass
standard static analysis tools. This is particularly dangerous in community-driven platforms
like Stack Overflow, where Al-generated answers may propagate vulnerabilities to thousands

of developers.
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Furthermore, the software supply chain faces new pressures. Shukla (Shukla, 2025)
argues that the ease of generating code increases the volume of third-party dependencies in-
cluded in projects. This necessitates the automated generation and management of Software
Bill of Materials (SBOMs). Without automated SBOM management, the opacity of Al-
generated codebases makes it nearly impossible to track vulnerability propagation. Aideyan
et al. (Aideyan et al., 2025) propose using blockchain-reproducible builds to counter this, en-
suring that the provenance of every line of code—whether human or Al-written—is immutable

and traceable.

4.2.8 Governance and Compliance Standards

The rapid adoption of GenAl has outpaced regulation, but standards are emerging.
The following table outlines the key components of ISO/IEC 42001:2023 as they apply to

software engineering organizations.

ISO 42001 Domain Engineering Application Compliance Requirement Citation
Risk Management AT Code Safety Auto-testing protocols (Birogul et
al., 2025)
Data Quality Training Data Vetting Clean data pipelines (Seet,
2025)
Transparency Explainability Decision logging (Birogul et
al., 2025)
Lifecycle Mgmt Model Updates/Versioning ~ CI/CD Integration (Jamili et
al., 2025)

Table B3: Application of ISO/IEC 42001:2023 to Software Engineering. Sources:
(Seet, 2025), (Birogul et al., 2025).
Birogul et al. (Birogul et al., 2025) emphasize that ISO 42001 provides the first com-

prehensive framework for managing Al systems organizationally. For software engineering

72



leaders, this means moving beyond ad-hoc tool adoption to a structured management system
that accounts for legal liability and ethical deployment. Seet (Seet, 2025) notes that legal
compliance is no longer optional; as Al tools become embedded in critical infrastructure,
adherence to these standards will likely become a prerequisite for liability insurance and

regulatory approval.

4.3 Appendix C: Glossary of Terms

This glossary defines key technical terms used throughout the thesis, contextualizing
them within the specific domain of Al-augmented software engineering.

Adversarial Prompting A technique where malicious inputs are designed to manip-
ulate an Al model into producing harmful, incorrect, or insecure outputs. In the context of
software engineering, this involves crafting prompts that cause coding assistants to generate
vulnerabilities or bypass security filters (Swaraj et al., 2025).

Agentless Framework A software engineering approach that uses Large Language
Models (LLMs) for code generation and repair without the complex state management of
autonomous agents. These frameworks typically use a two-phase process (localization and
repair) to reduce the cost and complexity associated with fully agentic systems (Xia et al.,
2024).

Automated Pull Request (PR) Analysis The use of Generative Al to automat-
ically analyze code changes, generate titles and summaries, and identify potential issues
before human review. This technology aims to reduce the cognitive load on maintainers and
accelerate the code integration process (Zuo et al., 2024)(Balachandran & Fawzer, 2025).

Context-Aware Code Review An advanced review methodology where the Al tool
analyzes not just the syntax of the changed code, but the semantic context of the surrounding
codebase, commit history, and project documentation. This allows for more relevant and

accurate critiques compared to traditional static analysis (Balachandran & Fawzer, 2025).
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Generative AI (GenAlI) A class of artificial intelligence systems capable of gener-
ating new content (text, code, images) in response to prompts. In software engineering, this
primarily refers to Large Language Models (LLMs) trained on vast repositories of source
code (e.g., GitHub) to assist in development tasks (Lakshmi et al., 2025)(Esposito et al.,
2024).

Human-Centered Software Engineering (HCSE) An approach to software de-
velopment that prioritizes the cognitive needs, capabilities, and limitations of the human
developers and users. In the Al era, HCSE focuses on designing Al assistants that aug-
ment rather than replace human decision-making, ensuring that the “human in the loop”
maintains agency and understanding (Seffah et al., 2009).

ISO/IEC 42001:2023 An international standard specifying requirements for es-
tablishing, implementing, maintaining, and continually improving an Artificial Intelligence
Management System (AIMS) within organizations. It provides the governance framework
necessary for the safe and compliant adoption of Al tools in enterprise environments (Seet,
2025)(Birogul et al., 2025).

Large Language Model (LLM) A deep learning algorithm that can recognize,
summarize, translate, predict, and generate text and other content based on knowledge
gained from massive datasets. Models like GPT-4 and Claude are foundational to tools like
GitHub Copilot (Zuo et al., 2024)(Xia et al., 2024).

Software Bill of Materials (SBOM) A formal, machine-readable inventory of
software components and dependencies, their hierarchical relationships, and their licensing
information. Automated SBOM generation is critical in Al-assisted development to track
the provenance of Al-suggested libraries and mitigate supply chain risks (Shukla, 2025)(Syed,
2024).

SWE-bench A rigorous evaluation framework designed to test the capabilities of

Language Models on real-world software engineering issues collected from GitHub. It serves
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as a standard metric for assessing the ability of Al agents to resolve complex coding tasks
autonomously (Zhu & Kang, 2025).

Synthetic Pair Programmer A conceptual metaphor describing the role of Al
coding assistants (e.g., GitHub Copilot) as collaborative partners rather than simple tools.
This relationship mimics the dynamic of human pair programming, where the AI offers
suggestions, completions, and critiques in real-time (Reddy Vootukuri, 2025)(Smit et al.,

2024).

4.4 Appendix D: Implementation and Governance Resources

This appendix provides actionable resources for engineering leadership and practi-
tioners regarding the implementation of Al tools. It synthesizes the governance strategies
and risk mitigation techniques discussed in the literature review into practical checklists and

frameworks.

4.4.1 Strategic Adoption Framework

Implementing GenAl in a software organization requires a structured approach to
avoid “shadow AI” usage and ensure security. The following framework, adapted from Barén

(Bar6n, 2025) and Deloitte’s insights (Deloitte, 2024), outlines a four-phase implementation

strategy.

Phase Objective Key Actions Success Metric
1. Assess- Identify high-value Survey dev teams; Use case clarity
ment use cases Audit current toolchain

2. Pilot Test efficacy & Deploy to non-critical Dev satisfaction

security teams; Sandbox testing
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Phase Objective Key Actions Success Metric

3. Gover- Establish policy Define acceptable use; Compliance rate
nance guardrails Implement ISO 42001
4. Scale Broad deployment Integration with Velocity increase

CI/CD; Training

programs

Table D1: Strategic AI Adoption Framework for Engineering Organizations.

The Assessment phase is critical. Organizations must determine where Al adds value
versus where it introduces unnecessary risk. For example, applying Al to generate boiler-
plate code for UI components offers high value with low risk, whereas using Al to generate

cryptographic implementation logic carries extreme risk.

4.4.2 Risk Mitigation Checklist

Based on the supply chain security findings by Syed (Syed, 2024) and Aideyan et
al. (Aideyan et al., 2025), the following checklist is recommended for all organizations inte-
grating GenAl into their production pipelines.

1. Code Provenance & Supply Chain - [ | Mandatory SBOMs: All Al-
generated code projects must auto-generate a Software Bill of Materials (Shukla, 2025). - |
| Dependency Verification: Automated scanning of all Al-suggested libraries to prevent
“dependency confusion” attacks. - [ ] Immutable Builds: Implementation of blockchain-
verified or signed builds to ensure code integrity from commit to deployment (Aideyan et al.,
2025).

2. Quality Assurance & Review - [ | Human-in-the-Loop: Mandatory human
review for all Al-generated Pull Requests. No auto-merge for Al code (Cihan et al., 2025).
- | ] Context-Aware Scanning: Utilization of advanced static analysis tools that under-

stand semantic context, not just syntax (Balachandran & Fawzer, 2025). - [ | Adversarial
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Testing: Regular red-teaming of Al assistants using adversarial prompts to check for leaked
secrets or insecure patterns (Swaraj et al., 2025).

3. Policy and Compliance - | | Data Privacy Boundaries: Strict prohibition
of pasting proprietary logic or PII into public LLM interfaces (Rosenbaum, 2024). - [ | ISO
Alignment: Alignment of internal Al policies with ISO/TEC 42001 standards regarding risk
management and transparency (Birogul et al., 2025). - [ ] Training: Mandatory training

for developers on the limitations and hallucination risks of LLMs (Lakshmi et al., 2025).

4.4.3 Future-Readiness: Cloud and Infrastructure

As organizations move toward “Intelligent Cloud Systems,” the infrastructure sup-
porting Al development must evolve. Jamili et al. (Jamili et al., 2025) propose a framework
for sustainable and secure Al at scale. This involves “adaptive Al orchestration,” where the
underlying cloud infrastructure dynamically allocates resources based on the computational
needs of the Al models being used.

For software engineers, this means the development environment itself is becoming
“smart.” The IDE is no longer a static text editor but a terminal for an intelligent cloud sys-
tem that manages context, retrieves relevant documentation via RAG (Retrieval-Augmented
Generation), and enforces security policies in real-time. Preparing for this future requires
investing in strong cloud architectures that can support the high bandwidth and low latency

required for smooth Al interaction.
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