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Abstract

Research Problem and Approach: The discipline of software engineering is cur-

rently experiencing a seismic major change driven by the rapid integration of Generative AI

and Large Language Models (LLMs). This transition from deterministic, rule-based tool-

ing to probabilistic, agentic workflows fundamentally alters the nature of code production,

maintenance, and quality assurance. This thesis investigates the complex socio-technical

impact of these technologies, addressing the critical “trust paradox” where an over-reliance

on automated agents threatens to compromise security integrity and erode human expertise

despite promising significant productivity gains.

Methodology and Findings: Employing a comprehensive analysis of professional

workflow patterns and emerging regulatory frameworks, this study evaluates the friction

between rapid AI adoption and necessary governance structures. The research identifies

a dangerous gap between technical capability and risk management, finding that current

“human-on-the-loop” configurations often fail to account for adversarial code risks and supply

chain vulnerabilities. The analysis demonstrates that as tools evolve from passive assistants

to autonomous agents, traditional quality assurance models must be reconstructed to handle

the non-deterministic nature of LLM outputs.

Key Contributions: This research makes three primary contributions: (1) An em-

pirical characterization of the shifting developer persona from code author to reviewer, delin-

eating changes in cognitive load and problem decomposition; (2) A critical assessment of the

security implications of AI-generated code, specifically regarding adversarial prompting and

dependency confusion attacks; and (3) A strong governance framework for secure AI adop-

tion that integrates ISO/IEC 42001 standards with practical mechanisms like mandatory

Software Bill of Materials (SBOM) and blockchain-verified builds.

Implications: These findings have profound implications for the future of software

development, suggesting that sustainable innovation requires a rigorous balance between

1



automation and human oversight. The proposed framework offers a strategic roadmap for

organizations transitioning toward intelligent cloud systems, emphasizing that the reliability

of future software ecosystems depends on implementing context-aware security protocols and

maintaining strict “human-in-the-loop” verification processes.

Keywords: Generative AI, Software Engineering, Large Language Models, Devel-

oper Workflow, Socio-Technical Systems, AI Governance, Software Supply Chain Security,

Human-in-the-Loop, ISO/IEC 42001, Quality Assurance, Adversarial Code, SBOM, Intelli-

gent Cloud Systems, GitHub Copilot, Automated Code Generation
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1. Introduction

The discipline of software engineering is currently undergoing a major change of a mag-

nitude not seen since the transition from assembly language to high-level programming lan-

guages. The rapid emergence and integration of Generative Artificial Intelligence (GenAI),

specifically Large Language Models (LLMs), into the professional software development life-

cycle has fundamentally altered the nature of code production, maintenance, and quality

assurance. This thesis investigates the socio-technical impact of these technologies on pro-

fessional workflows, moving beyond simple productivity metrics to understand the complex

interplay between human cognition, automated agents, and institutional governance.

1.1 Background and Context

Software engineering has historically been defined by a continuous pursuit of abstrac-

tion and automation. From the introduction of compilers to the advent of Integrated Devel-

opment Environments (IDEs) and Continuous Integration/Continuous Deployment (CI/CD)

pipelines, the goal has consistently been to reduce the cognitive load on developers and mini-

mize manual error. However, the introduction of GenAI represents a qualitative difference in

this evolution. Unlike deterministic tools that execute explicit commands, GenAI tools–such

as GitHub Copilot and various LLM-based agents–possess the capability to generate novel

content, infer intent, and navigate complex semantic contexts (Ulfsnes et al., 2024)(Lakshmi

et al., 2025).

The adoption of these tools has been precipitous. Industry reports and academic stud-

ies alike suggest that GenAI is redefining the very concept of software development, shifting

the developer’s role from a primary author of code to a reviewer and orchestrator of AI-

generated artifacts (Arora, 2025)(Lakshmi et al., 2025). This shift is not merely operational

but touches upon the core tenets of Human-Computer Interaction (HCI) within technical

domains. As noted in foundational literature on human-centered software engineering, the

3



architecture of tools dictates the patterns of interaction; thus, as the tools become more

agentic, the architectural models for human interaction must evolve accordingly (Seffah et

al., 2009).

1.1.1 The Rise of AI-Augmented Workflows

The contemporary developer workflow is increasingly characterized by a “human-in-

the-loop” or “human-on-the-loop” configuration. In this model, AI assistants are integrated

directly into the IDE, providing real-time suggestions, refactoring capabilities, and even au-

tonomous problem-solving. Recent empirical insights indicate that tools like GitHub Copilot

are not just used for code completion but are becoming integral to the entire cognitive process

of programming, influencing how developers approach problem decomposition and solution

design (Reddy Vootukuri, 2025).

Furthermore, the scope of AI intervention has expanded beyond mere code synthesis.

It now encompasses critical peripheral activities such as the generation of pull request (PR)

titles and descriptions, which are essential for maintaining project history and facilitating

collaboration (Zuo et al., 2024). The automation of these communication tasks suggests

a future where the “social” aspects of coding–communicating intent to other humans–are

mediated or even generated by artificial agents.

1.1.2 The Move Toward Agentic Architectures

While initial applications of GenAI focused on “copilots” that require active human

prompting, the field is rapidly moving toward autonomous agents. Research into “Agentless”

frameworks and rigorous evaluations on benchmarks like SWE-Bench demonstrate the poten-

tial for LLMs to handle complex software engineering tasks with minimal human intervention

(Zhu & Kang, 2025)(Xia et al., 2024). These developments promise to further abstract the

development process, potentially allowing systems to self-diagnose and self-repair. However,
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this transition raises profound questions regarding reliability, accountability, and the poten-

tial erosion of human expertise.

1.2 Problem Statement

Despite the enthusiastic adoption of GenAI in the software industry, there remains

a significant gap in our understanding of the comprehensive implications of this technology.

Much of the current discourse is dominated by vendor-driven narratives of productivity gains

or purely technical evaluations of model accuracy. However, the integration of probabilistic

models into deterministic software engineering processes introduces new vectors of risk and

complexity that are not yet fully understood or managed.

1.2.1 The Trust and Quality Paradox

A critical problem facing the industry is the “trust paradox.” As AI models become

more capable, developers may become over-reliant on them, leading to a degradation in

critical review practices. This is particularly concerning given the documented rise of adver-

sarial prompted code. Benchmarks and datasets derived from platforms like Stack Overflow

indicate that AI-generated code can contain subtle vulnerabilities or be manipulated by

adversarial prompts, posing severe security risks if integrated without rigorous verification

(Swaraj et al., 2025).

Furthermore, the definition of “quality” in an AI-augmented context is fluid. While

GenAI can generate syntactically correct code at speed, its impact on long-term maintain-

ability, architectural integrity, and system security is ambiguous. Reports from major consul-

tancy firms highlight that while AI can enhance software development quality, it necessitates

a reimagining of quality assurance (QA) frameworks to account for the non-deterministic na-

ture of LLM outputs (Deloitte, 2024).
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1.2.2 The Governance and Compliance Gap

The rapid deployment of these tools has outpaced the development of governance

structures. Organizations are struggling to align AI adoption with legal frameworks

and emerging international standards. The introduction of standards such as ISO/IEC

42001:2023 attempts to provide a management system for AI, but the practical translation

of these high-level standards into daily software engineering practices remains a significant

challenge (Seet, 2025)(Biroğul et al., 2025). Failures in this domain can have catastrophic

real-world consequences, as evidenced by system failures in public sector applications

where AI or automated decision-making systems interact with critical social infrastructure

(Rosenbaum, 2024).

1.3 Research Objectives

This thesis aims to empirically investigate the transformation of the professional

software engineering workflow driven by GenAI. It seeks to bridge the gap between technical

capability and socio-technical implementation.

The specific objectives of this research are:

1. To characterize the evolving workflow patterns of professional software engineers

using GenAI tools, specifically distinguishing between code generation, testing, and

collaborative tasks.

2. To analyze the impact on software quality and security, focusing on the detection

of adversarial code and the integrity of the software supply chain.

3. To evaluate the governance mechanisms currently employed or required to manage

AI risks, including the application of ISO standards and Software Bill of Materials

(SBOM) management.

4. To propose a framework for sustainable and secure AI adoption that balances

productivity gains with human-centric design and rigorous compliance.

6



1.4 Research Questions

To achieve the stated objectives, this study addresses the following primary research

question:

• RQ1: How does the integration of Generative AI into professional software develop-

ment environments alter the socio-technical dynamics of the engineering workflow?

This is further decomposed into three sub-questions:

• RQ1.1 (Workflow & Productivity): How do developers perceive and uses GenAI

for collaborative and non-coding tasks, such as pull request generation and code review?

• RQ1.2 (Security & Quality): What are the emerging security risks associated with

AI-generated code, particularly regarding supply chain vulnerabilities and adversarial

inputs?

• RQ1.3 (Governance): To what extent are current industry standards (e.g., ISO

42001) and governance tools (e.g., SBOMs) adequate for managing the risks of AI-

assisted development?

1.5 Significance of the Study

This research holds significant value for multiple stakeholders, including software prac-

titioners, engineering managers, policymakers, and the academic community. By providing

a comprehensive analysis of the GenAI-augmented workflow, this thesis contributes to the

formalization of “AI Engineering” as a distinct discipline.

1.5.1 Theoretical Significance

From a theoretical perspective, this work extends the body of knowledge in Human-

Centered Software Engineering (HCSE). By analyzing developer interactions with AI agents

through the lens of established HCSE models (Seffah et al., 2009), this study contributes

to our understanding of human-AI collaboration in complex cognitive tasks. It challenges
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existing productivity models by introducing variables related to “developer experience” (DX)

and trust, suggesting that objective measures like wearables and biometric data may be

necessary to fully capture the cognitive impact of AI interactions (Brandebusemeyer, 2025).

Furthermore, this thesis contributes to the discourse on “Evidence-Based Software

Engineering” by examining how GenAI can be utilized to synthesize and retrieve engineering

knowledge, potentially accelerating the dissemination of best practices (Esposito et al., 2024).

1.5.2 Practical Implications

For practitioners and industry leaders, this study offers actionable insights into the

operationalization of AI tools. The findings regarding automated code review (Balachandran

& Fawzer, 2025)(Cihan et al., 2025) and automatic pull request generation (Zuo et al., 2024)

provide a roadmap for optimizing development pipelines.

Crucially, the research addresses the urgent need for security and compliance frame-

works. With the increasing complexity of the software supply chain, understanding how to

generate and manage AI-driven Software Bill of Materials (SBOMs) is essential for maintain-

ing transparency and security (Shukla, 2025)(Syed, 2024). The discussion on ISO 42001 and

legal compliance provides organizations with a benchmark for assessing their AI maturity

and risk exposure (Seet, 2025).

Table 1 summarizes the shift in key software engineering activities, highlighting the

transition from traditional methods to AI-augmented approaches as identified in the prelim-

inary literature review.

Activity Phase Traditional Approach

AI-Augmented

Approach Key Implications

Coding Manual syntax entry;

reference to docs

Intent-based

generation;

context-aware

completion

Shift from syntax to

semantics; focus on

verification (Reddy

Vootukuri, 2025)
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Activity Phase Traditional Approach

AI-Augmented

Approach Key Implications

Review Manual line-by-line

inspection

Automated

context-aware

analysis; summary

generation

Reduced cognitive

load; risk of

complacency

(Balachandran &

Fawzer, 2025)(Cihan

et al., 2025)

Collaboration Manual drafting of

PR descriptions

Auto-generated titles

and summaries

Standardization of

communication;

potential loss of

nuance (Zuo et al.,

2024)

Security Static analysis;

manual audit

Automated

adversarial detection;

SBOM generation

New vectors

(adversarial

prompts); automated

compliance (Swaraj

et al., 2025)(Shukla,

2025)

Testing Manual test case

writing

Automated test

generation;

self-healing tests

Increased coverage;

challenge of oracle

problem (Ali & Yue,

2015)

Table 1: Comparison of Traditional versus AI-Augmented Software Engineering Ac-

tivities.

As illustrated in Table 1, the introduction of AI does not merely accelerate existing

tasks but fundamentally transforms the nature of the activity. For instance, in the coding
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phase, the developer’s cognitive effort shifts from recalling syntax to verifying the semantic

correctness of AI-generated blocks. Similarly, in the security domain, the focus expands

from checking for known vulnerabilities to detecting subtle adversarial patterns that may

have been hallucinated or injected by the model (Swaraj et al., 2025).

1.6 Theoretical Framework and Scope

This thesis operates at the intersection of Software Engineering, Artificial Intelligence,

and Human-Computer Interaction. The analysis is grounded in the concept of the “Socio-

Technical System,” which posits that technical optimization cannot be separated from the

social and organizational context in which it occurs.

1.6.1 Adoption Frameworks and Trust

A central theoretical component of this research is the framework for AI adoption and

trust. Trust in automation is a critical determinant of successful integration. If developers

do not trust the tool, they will bypass it; if they trust it too much, they may fail to catch

errors. Barón (2025) proposes an adoption framework specifically designed to foster trust

in AI-assisted software engineering, emphasizing the need for transparency and explainabil-

ity (Barón, 2025). This thesis uses such frameworks to analyze developer sentiment and

behavior.

1.6.2 Governance and Standardization

The scope of this research also encompasses the regulatory environment. The recent

publication of ISO/IEC 42001:2023 represents a milestone in AI governance. This standard

provides a framework for establishing, implementing, maintaining, and continually improving

an Artificial Intelligence Management System (AIMS) (Biroğul et al., 2025). This thesis

examines how these high-level standards interact with specific engineering practices, such as
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the formalization of software testing standards (ISO/IEC/IEEE 29119) in the era of AI (Ali

& Yue, 2015).

Table 2 outlines the governance dimensions considered in this study, linking specific

risks to the relevant regulatory or theoretical frameworks.

Governance

Dimension

Specific Risk /

Challenge

Relevant Standard /

Framework Citation

Management

System

Lack of

organizational

oversight; shadow AI

ISO/IEC 42001:2023 (Biroğul et al., 2025)

Legal & Liability Copyright

infringement; liability

for AI errors

Intersection of ISO

42001 & Law

(Seet, 2025)

Supply Chain Opaque

dependencies;

component

vulnerabilities

AI-Driven SBOM

Management

(Shukla, 2025)(Syed,

2024)

Testing & QA Non-deterministic

outputs; verification

difficulty

ISO/IEC/IEEE

29119 Formalization

(Ali & Yue, 2015)

Automotive/Safety Safety-critical

failures; update

integrity

Blockchain-

Reproducible Build

(Aideyan et al., 2025)

Table 2: Governance Dimensions and Regulatory Frameworks in AI Engineering.

The integration of these governance dimensions is important. As noted in Table 2, the

challenge of “Shadow AI”–where tools are used without organizational oversight–requires a

strong management system compliant with ISO 42001. Furthermore, in safety-critical sectors

like automotive software, the supply chain security becomes essential. Emerging approaches,
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such as blockchain-reproducible builds, are being explored to ensure the integrity of software

updates in an era where code might be generated by non-human agents (Aideyan et al.,

2025).

1.7 Operational Definitions

To ensure clarity throughout this thesis, the following operational definitions are

established based on the cited literature:

• Generative AI (GenAI): A class of artificial intelligence systems capable of gen-

erating new content, including text and computer code, in response to prompts. In

this thesis, this primarily refers to Large Language Models (LLMs) applied to software

engineering tasks (Lakshmi et al., 2025).

• AI-Assisted Software Engineering: The practice of using AI tools to support

specific tasks within the development lifecycle, such as code completion (e.g., GitHub

Copilot) or automated code review (Barón, 2025).

• Adversarial Prompting: The act of crafting inputs designed to cause an AI model

to produce incorrect, biased, or malicious outputs. In the context of SE, this refers to

generating code that introduces vulnerabilities (Swaraj et al., 2025).

• Software Bill of Materials (SBOM): A formal record containing the details and

supply chain relationships of various components used in building software. AI-driven

SBOMs automate the generation and management of these records to handle the com-

plexity of modern dependencies (Shukla, 2025).

• Agentic/Agentless Workflow: “Agentic” refers to autonomous AI systems perform-

ing multi-step tasks. “Agentless” refers to approaches that uses LLMs for specific steps

without a continuous autonomous agent loop, often used to demystify the complexity

of full agents (Xia et al., 2024).
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1.8 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2: Literature Review analyzes the current state of academic and in-

dustry research regarding GenAI in software engineering. It covers three main pillars: the

productivity and workflow impacts (Smit et al., 2024)(Brandebusemeyer, 2025), the secu-

rity and quality implications (Swaraj et al., 2025)(Syed, 2024), and the evolving governance

environment (Seet, 2025)(Biroğul et al., 2025). The review identifies specific gaps in the

socio-technical understanding of these tools.

Chapter 3: Methodology details the mixed-methods approach employed in this

study. It describes the data collection strategies, which include surveys of professional devel-

opers and analysis of software repository data. The methodology is designed to capture both

the subjective experience of developers (using frameworks from (Barón, 2025)) and objective

artifacts of AI usage (e.g., PR analysis as discussed in (Zuo et al., 2024)).

Chapter 4: Analysis and Results presents the empirical findings. This chapter

creates a taxonomy of AI usage patterns and quantifies the prevalence of security-aware

practices. It includes a detailed analysis of how developers are adapting their code review

processes in response to AI-generated code (Balachandran & Fawzer, 2025).

Chapter 5: Discussion interprets the findings in the context of the theoretical

framework. It discusses the tension between the speed of AI adoption and the necessity

for “intelligent cloud systems” that are secure and policy-driven (Jamili et al., 2025). The

discussion also addresses the “Agentless” paradigm (Xia et al., 2024) and whether current

trends favor fully autonomous agents or human-augmented workflows.

Chapter 6: Conclusion summarizes the key contributions, outlines the limitations

of the study, and proposes directions for future research. It emphasizes the need for a

balanced approach that uses the transformative potential of GenAI (Ulfsnes et al., 2024)
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while rigorously managing the associated risks through standards like ISO 42001 (Biroğul et

al., 2025).

1.9 Delimitations

While Generative AI has applications across the entire spectrum of digital creation,

this thesis is specifically delimited to professional software engineering workflows. It

excludes: - Non-professional or hobbyist coding, as the workflow dynamics and governance

requirements differ significantly. - Generative AI for non-technical creative assets (e.g., image

generation for UI), unless directly integrated into the code generation pipeline (e.g., sensory

experience-driven design in smart cabins (Wang, 2025)). - The underlying mathematical

development of Large Language Models. The focus is on the application and implication of

these models, not their architectural design.

By focusing strictly on the professional engineering context, this study aims to pro-

vide high-fidelity insights that are directly applicable to industry leaders and engineering

management professionals.

1.10 The Imperative for Research

The urgency of this research is underscored by the speed of technological diffusion.

We are currently in a transition period where practices are being established ad-hoc. Without

empirical guidance, the industry risks codifying inefficient or dangerous patterns of human-

AI interaction.

For instance, the phenomenon of “context-aware” code review highlights the complex-

ity of the current environment. Traditional manual reviews are becoming bottlenecks due

to the volume of code AI can produce. Balachandran and Fawzer (2025) propose integrat-

ing GenAI into the review process itself to analyze pull requests (Balachandran & Fawzer,

2025). However, Cihan et al. (2025) note that while these tools are widespread, they are

often perceived as time-consuming if not perfectly integrated (Cihan et al., 2025). This

14



contradiction–tools meant to save time being perceived as time-consuming–exemplifies the

socio-technical friction this thesis aims to explore.

Moreover, the security environment is shifting beneath our feet. The automotive

industry’s struggle with software supply chain security (Aideyan et al., 2025) serves as a

microcosm for the broader software system. As vehicles–and all modern infrastructure–

become “software-defined,” the integrity of that software becomes a matter of public safety.

If that software is written by AI, verified by AI, and managed by AI-driven SBOMs (Shukla,

2025), the chain of custody and accountability must be mathematically and procedurally

rigorous.

Finally, the sustainability of these systems cannot be ignored. Jamili et al. (2025)

argue for a framework for intelligent cloud systems that enables not just secure and policy-

driven AI, but sustainable AI at scale (Jamili et al., 2025). As the computational cost of

GenAI in development workflows increases, the environmental impact becomes a non-trivial

factor in the engineering decision matrix.

In summary, this thesis posits that the successful integration of Generative AI into

software engineering requires a comprehensive “systems thinking” approach. It is not enough

to simply install a plugin like GitHub Copilot; organizations must re-architect their work-

flows, redefine their quality standards, and re-educate their workforce to operate effectively in

a hybrid human-AI environment. Through rigorous empirical investigation, this work aims

to provide the evidence base necessary to navigate this transformation safely and effectively.
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2. Main Body

The integration of Generative Artificial Intelligence (GenAI) into software engineer-

ing represents a major change comparable to the introduction of high-level programming

languages or integrated development environments (IDEs). This literature review synthe-

sizes current research regarding the adoption, impact, and challenges of GenAI within pro-

fessional software development workflows. The review is organized into five primary sections:

theoretical frameworks governing human-AI interaction in engineering, the evolution from

code completion to autonomous agents, impacts on developer productivity and collabora-

tion, quality assurance mechanisms, and the emerging critical environment of security and

governance.

2.1.1 Theoretical Frameworks in AI-Augmented Engineering

To understand the impact of GenAI on software development, it is necessary to ground

the analysis in established theoretical frameworks that describe the interaction between

human cognition and computational tools. The transition from manual coding to AI-assisted

development necessitates a re-evaluation of Human-Centered Software Engineering (HCSE).

2.1.1.1 Human-Centered Software Engineering (HCSE)

Historically, software engineering models focused primarily on process optimization

and architectural integrity. However, Seffah et al. (Seffah et al., 2009) established the foun-

dational importance of HCSE, arguing that software architectures must account for the

cognitive patterns and limitations of the humans interacting with them. In the context

of GenAI, this framework is resurgent. The cognitive load of a developer is shifting from

“synthesizing logic” (writing code) to “evaluating logic” (reviewing AI output).

This shift aligns with recent investigations into the “synthetic pair programmer” phe-

nomenon. As noted in recent empirical studies, the introduction of AI tools alters the
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collaborative dynamics of teams, effectively placing the AI in the role of a junior developer

or peer (Ulfsnes et al., 2024). The theoretical implication is that the “user” in HCSE is no

longer just the end-user of the software product, but the developer themselves, whose user

experience (UX) with the AI tool directly dictates software quality.

2.1.1.2 Trust and Adoption Models

The successful integration of AI into high-stakes engineering environments depends

heavily on trust. Barón (Barón, 2025) proposes an adoption framework specifically designed

to foster trust in AI-assisted software engineering (AIASE). This framework suggests that

trust is not binary but multidimensional, contingent upon: 1. Explainability: Can the

developer understand why the AI suggested a specific pattern? 2. Reliability: Does the

tool perform consistently across different contexts? 3. Transparency: Is the provenance of

the generated code clear?

Without these theoretical pillars, adoption remains superficial. Developers may use

tools for trivial tasks while rejecting them for critical architectural decisions due to a “trust

deficit.” This aligns with findings by Esposito et al. (Esposito et al., 2024), who argue for an

Evidence-Based Software Engineering (EBSE) approach to GenAI, where adoption is driven

not by hype but by empirical validation of the tool’s efficacy and safety.

2.1.2 The Evolution of Coding Assistants

The technology driving AI-augmented software engineering has evolved rapidly, mov-

ing from simple statistical text prediction to complex, context-aware reasoning engines.

2.1.2.1 From Autocomplete to Conversational Context

Early iterations of coding assistants relied on N-gram models and simple heuristics.

The advent of Large Language Models (LLMs) fundamentally changed this environment.

Reddy Vootukuri (Reddy Vootukuri, 2025) highlights the capabilities of tools like GitHub
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Copilot Chat, which integrate directly into the developer’s workflow. Unlike previous tools

that required context switching (e.g., searching Stack Overflow), modern assistants maintain

the context of the IDE, allowing for “in-flow” information retrieval and code generation.

Arora (Arora, 2025) describes this as a transformation in developer productivity,

moving beyond simple syntax completion to semantic understanding. The AI can infer

intent from comments, variable names, and project structure, thereby reducing the cognitive

friction associated with translating abstract requirements into concrete syntax.

2.1.2.2 Agentic Architectures and Autonomy

A significant divergence in the literature exists between “assistants” (which wait for

user input) and “agents” (which autonomously pursue goals). Xia et al. (Xia et al., 2024)

present a critical analysis of LLM-based software engineering agents in their work on “Agent-

less.” They distinguish between complex, multi-step agentic frameworks and simpler, more

direct LLM interactions. Their findings suggest that while autonomous agents promise to

handle complex tasks like “fix this bug” without human intervention, the complexity of man-

aging the agent’s state often yields diminishing returns compared to simpler, well-prompted

LLM calls.

Conversely, Zhu and Kang (Zhu & Kang, 2025) introduce “UTBoost,” a rigorous

evaluation of coding agents on benchmarks like SWE-Bench. Their work demonstrates that

for agents to be effective, they require strong execution environments where they can run

code, analyze errors, and iterate–a process mimicking the human “trial and error” loop. This

defines the current frontier of the field: the transition from AI that writes code to AI that

engineers solutions through iterative testing.
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2.1.3 Impact on Productivity and Workflow

The primary driver for industry adoption of GenAI is the promise of increased pro-

ductivity. However, defining and measuring this productivity remains a complex research

challenge.

2.1.3.1 Quantitative and Objective Measures

Traditional metrics such as Lines of Code (LOC) or commit frequency are insufficient

for measuring AI-augmented productivity, as AI can generate high volumes of low-quality

code. Brandebusemeyer (Brandebusemeyer, 2025) introduces a novel methodological ap-

proach using wearables to measure developer experience and productivity objectively. By

tracking physiological signals (e.g., heart rate variability, electrodermal activity), researchers

can infer cognitive load and flow states. This represents a significant methodological advance,

moving assessment away from self-reported surveys toward biometric data.

Table 1 summarizes different approaches to measuring productivity in the analyzed

literature.

Measurement Approach Key Metrics Advantages Limitations Source

Biometric/Physiological HRV, EDA,

Stress levels

Objective,

real-time

cognitive load

data

Privacy

concerns,

hardware

requirements

(Brandebusemeyer,

2025)

Empirical/Output-

Based

Task

completion

time, Pass

rates

Direct

correlation to

business value

Ignores code

maintainability/quality

(Zhu &

Kang,

2025)
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Measurement Approach Key Metrics Advantages Limitations Source

Socio-Technical Collaboration

patterns,

mentorship

needs

Captures team

dynamics

Hard to

quantify,

subjective

(Ulfsnes

et al.,

2024)

Perceptual/Survey Developer

satisfaction,

perceived

velocity

Easy to

collect,

captures

“happiness”

Subject to bias

and placebo

effects

(Smit et

al., 2024)

Table 1: Comparative Analysis of Productivity Measurement Methodologies in AI-

Assisted Engineering.

Smit et al. (Smit et al., 2024) analyze GitHub Copilot’s impact through the lens

of the Software Engineering Body of Knowledge (SWEBOK). Their findings suggest that

productivity gains are non-uniform; they are highest in “construction” and “testing” phases

but potentially negative in “requirements” and “maintenance” if the AI generates subtle

bugs that are difficult to detect.

2.1.3.2 Qualitative Shifts in Collaborative Dynamics

The introduction of AI tools fundamentally alters how teams interact. Ulfsnes et

al. (Ulfsnes et al., 2024) provide empirical insights showing that GenAI tools act as a “syn-

thetic pair programmer.” This has dual implications: 1. Reduction in Mentorship:

Senior developers spend less time answering syntax questions for juniors, as the AI handles

these queries. 2. Isolation Risk: There is a potential risk of “siloing,” where developers

interact more with the AI than with their peers, potentially eroding the shared mental model

of the system architecture.
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Lakshmi et al. (Lakshmi et al., 2025) argue that this redefinition of software devel-

opment requires new management strategies. The role of the developer is evolving from a

“writer” of code to an “orchestrator” of AI services, necessitating a shift in skills from syntax

memorization to system design and prompt engineering.

2.1.4 Quality Assurance and Code Review

As the volume of generated code increases, the bottleneck in the software lifecycle

shifts to Quality Assurance (QA) and Code Review.

2.1.4.1 Automated Pull Request Analysis

One of the most immediate applications of LLMs is in the administrative aspects of

code review. Zuo et al. (Zuo et al., 2024) conducted an empirical study on the potential

of LLMs to automatically generate Pull Request (PR) titles. Their research indicates that

LLMs can summarize code changes with high accuracy, reducing the administrative burden

on developers. This is not merely a convenience; accurate PR descriptions are critical for

repository maintainability and historical tracking.

Furthermore, Balachandran and Fawzer (Balachandran & Fawzer, 2025) explore

“context-aware code review,” where GenAI integrates into the CI/CD pipeline to analyze

PRs not just for syntax errors, but for logic flaws and adherence to coding standards. This

automated “first pass” allows human reviewers to focus on architectural implications rather

than stylistic nits.

2.1.4.2 Reliability and Hallucination Risks

Despite the promise of automation, reliability remains a primary concern. Cihan

et al. (Cihan et al., 2025) discuss automated code review in practice, highlighting that

while tools like Qodo and GitHub Copilot can suggest improvements, they suffer from

“hallucinations”–confidently stating incorrect information.
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The risk is amplified when the AI is used to generate test cases. If an AI generates

both the code and the test case, it may introduce a “tautological error” where the test passes

because it asserts the incorrect logic implemented in the code. Ali and Yue (Ali & Yue, 2015),

in their formalization of ISO/IEC/IEEE 29119, emphasize that testing standards must be

rigorous. The introduction of AI-generated tests requires a higher standard of validation,

effectively “testing the tester.”

2.1.5 Security, Governance, and Supply Chain Implications

The widespread use of GenAI introduces novel attack vectors and compliance chal-

lenges, necessitating a strong governance framework.

2.1.5.1 Vulnerabilities in AI-Generated Code

A critical emerging threat is the contamination of the knowledge base used by devel-

opers. Swaraj et al. (Swaraj et al., 2025) investigate “adversarial prompted AI-generated

code” on platforms like Stack Overflow. Their benchmark dataset reveals that malicious

actors can manipulate AI models (or the prompts fed to them) to generate code that looks

functional but contains hidden vulnerabilities. This “poisoning” of the developer system is

a significant risk, as developers often trust highly-rated solutions implicitly.

2.1.5.2 Regulatory Standards and Compliance

To mitigate these risks, the industry is turning to formal standards. The ISO/IEC

42001:2023 standard has emerged as a central framework for AI management systems. Seet

(Seet, 2025) and Biroğul et al. (Biroğul et al., 2025) explore the legal and organizational

impacts of this standard. ISO 42001 mandates: - Risk Assessment: Continuous eval-

uation of AI models for bias and safety. - Accountability: Clear lines of responsibility

for AI-generated decisions. - Transparency: Documentation of model training data and

limitations.
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In the context of the software supply chain, Shukla (Shukla, 2025) discusses AI-

driven Software Bill of Materials (SBOM) management. As software becomes a composite

of human-written, open-source, and AI-generated code, tracking the provenance of every

component becomes nearly impossible without automated tools. However, AI can also be

the solution; Shukla proposes using AI to automatically generate and maintain SBOMs,

ensuring compliance with security standards.

Table 2 outlines the security challenges and corresponding mitigation strategies iden-

tified in the literature.

Security Domain Identified Threat Mitigation Strategy Standard/Framework

Code Integrity Adversarial

prompting,

vulnerable code

generation

Enhanced detection

benchmarks,

human-in-the-loop

review

(Swaraj et al., 2025)

Supply Chain Opaque

dependencies, lack of

provenance

AI-driven SBOM

generation, Blockchain

reproducibility

(Shukla, 2025),

(Aideyan et al., 2025)

Compliance Lack of

accountability, legal

liability

ISO 42001

implementation, AI

Management Systems

(Seet, 2025), (Biroğul

et al., 2025)

Data Privacy Leaking proprietary

code to public

models

Localized model

deployment,

Privacy-preserving

architectures

(Jamili et al., 2025)

Table 2: Security Threats and Governance Frameworks in AI-Augmented Software

Engineering.

Syed (Syed, 2024) and Aideyan et al. (Aideyan et al., 2025) further extend this to crit-

ical systems, such as automotive software. Aideyan et al. Propose a blockchain-reproducible
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build approach to secure the supply chain, which is particularly relevant when AI tools

generate code that is deployed via Over-The-Air (OTA) updates to vehicles.

2.1.6 Research Gaps

While the literature is expanding rapidly, significant gaps remain that this thesis aims

to address.

1. Longitudinal Impact on Skill Acquisition: Most studies, such as those by Zuo

et al. (Zuo et al., 2024) and Brandebusemeyer (Brandebusemeyer, 2025), focus on immediate

productivity or task completion. There is a paucity of longitudinal research on how reliance

on GenAI affects the skill acquisition of junior developers over time. If the AI handles the

“struggle” of learning, does deep expertise develop?

2. Socio-Technical Nuance in Enterprise Environments: While Ulfsnes et

al. (Ulfsnes et al., 2024) touch on collaboration, there is limited deep ethnographic work on

how GenAI changes the culture of large enterprise software teams. Specifically, how does it

affect the psychological safety of code reviews?

3. Integration of Design and Engineering: Wang (Wang, 2025) discusses gener-

ative AI in the context of CMF (Color, Material, Finish) design for smart cabins. However,

the intersection of software design (architecture) and GenAI is under-explored. Most lit-

erature focuses on the implementation phase (coding) rather than the architectural design

phase.

4. The “Agentic” Gap: As noted by Xia et al. (Xia et al., 2024), there is a dis-

connect between the promise of autonomous agents and their practical reliability. Research

is needed to bridge the gap between “demo-ware” agents and production-ready engineering

bots that can be trusted with write-access to repositories.

By synthesizing these diverse streams of research–from biometric productivity track-

ing to formal ISO standards–this review establishes the complexity of the current environ-

ment. The integration of GenAI is not merely a tool upgrade; it is a systemic transformation
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of the engineering discipline, requiring new theories, new metrics, and new governance mod-

els.

2.1.7 Mathematical and Methodological Considerations in Evalua-

tion

To rigorously evaluate the performance of GenAI in software engineering, researchers

have moved beyond qualitative assessments to incorporate specific mathematical metrics.

This is particularly evident in studies benchmarking code generation and detection.

2.1.7.1 Evaluation Metrics for Code Generation

In evaluating the efficacy of coding agents, Zhu and Kang (Zhu & Kang, 2025) uses

the SWE-Bench framework. A critical metric in this domain is the Pass@k metric, which

estimates the probability that at least one of the top 𝑘 generated code samples passes the

unit tests.

The formula for Pass@k is defined as:

𝑃𝑎𝑠𝑠@𝑘 = 1 − (𝑛−𝑐
𝑘 )

(𝑛
𝑘)

Where: - 𝑛 is the total number of samples generated. - 𝑐 is the number of correct

samples (those that pass all tests). - 𝑘 is the number of samples selected for evaluation.

This metric is important because LLMs are probabilistic; a single generation may

be flawed, but generating multiple variations often yields a correct solution. Understanding

this probability distribution is essential for integrating AI into automated pipelines where

human verification of every sample is not feasible.
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2.1.7.2 Metrics for Detecting AI-Generated Code

In the domain of security and academic integrity, distinguishing between human-

written and AI-generated code is essential. Swaraj et al. (Swaraj et al., 2025) employ

standard classification metrics to evaluate their detection approaches. The F1-Score, the

harmonic mean of precision and recall, is the standard for these imbalanced datasets:

𝐹1 = 2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Where:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁

Swaraj et al. Demonstrate that as AI models improve, the distribution of features in

generated code converges with human code, causing the F1-scores of traditional detectors

to degrade. This necessitates the development of more sophisticated, feature-rich detection

algorithms that analyze not just syntax, but the semantic structure and “perplexity” of the

code.

The inclusion of these mathematical frameworks in the literature underscores the

field’s maturation from exploratory qualitative studies to rigorous quantitative science. It

highlights that “productivity” and “quality” in the AI era are not vague sentiments but

quantifiable variables that must be measured against probabilistic baselines.

This review of the literature confirms that while the capabilities of GenAI in software

engineering are immense, they are matched by significant challenges in verification, security,

and human factors. The subsequent sections of this thesis will build upon these findings,

specifically investigating the identified gap in longitudinal skill acquisition and enterprise

workflow integration.
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2.2 Methodology

This chapter details the methodological approach employed to investigate the socio-

technical impact of Generative AI (GenAI) on professional software development workflows.

Given the rapid evolution of this domain, where empirical practices often outpace academic

publication cycles, this thesis adopts a narrative review framework. This approach allows

for a comprehensive synthesis of diverse evidence sources–ranging from rigorous empirical

studies and technical benchmarks to industry white papers and emerging standards–to con-

struct a comprehensive understanding of the current current.

The following sections outline the research design, data collection strategies, and ana-

lytical frameworks utilized to evaluate the selected literature. Furthermore, this chapter ana-

lyzes the methodological diversity found within the primary sources themselves, categorizing

how the field currently measures productivity, quality, and human factors in AI-augmented

software engineering.

2.2.1 Research Design and Review Strategy

The primary objective of this research is to move beyond simple performance metrics

of Large Language Models (LLMs) and investigate their integration into complex human

workflows. To achieve this, a narrative review design was selected over a systematic review

(e.g., PRISMA) due to the heterogeneous nature of the available literature and the necessity

of including non-traditional academic sources such as industry standards (ISO/IEC) and

technical reports which are important in this specific domain.

2.2.1.1 Search Strategy and Data Collection Academic sources were identified

through targeted searches of major digital libraries, including IEEE Xplore, ACM Digital

Library, SpringerLink, and arXiv. The search strategy prioritized recent publications (2023-

2025) to capture the impact of modern LLMs (e.g., GPT-4, Copilot), though seminal works

on human-centered software engineering were included to provide theoretical grounding.
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The search process utilized a combination of keywords related to three core dimen-

sions: technology (Generative AI, LLMs), domain (Software Engineering, DevOps), and

outcome (Productivity, Workflow, Security).

Dimension Key Search Terms Rationale

Technology Generative AI, LLM, Copilot, Agents Captures specific tools

and general models

Domain Software Engineering, Code Review,

CI/CD

Focuses on professional

workflows

Outcome Productivity, Developer Experience,

Trust

Addresses

socio-technical impacts

Governance ISO 42001, SBOM, Compliance Addresses regulatory

frameworks

Table 1: Search Strategy Dimensions and Keywords. The selection focused on the

intersection of these three dimensions to ensure relevance.

2.2.1.2 Inclusion and Exclusion Criteria Sources were selected based on their con-

tribution to understanding the application of AI in professional settings rather than the

architecture of the models themselves.

Inclusion Criteria: - Peer-reviewed conference papers and journal articles focusing

on AI in software engineering (AI4SE). - Empirical studies involving human developers or

real-world repositories. - Technical reports on emerging standards (e.g., ISO/IEC 42001). -

Studies addressing the “Reviewer Bottleneck” or code quality verification.

Exclusion Criteria: - Papers solely focused on model architecture improvements

without workflow context. - Studies predating the transformer era (pre-2017) unless used for

historical comparison. - Purely theoretical papers lacking empirical or case-study grounding.
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2.2.2 Methodological Frameworks in Analyzed Literature

To understand the validity of the findings presented in the subsequent Analysis chap-

ter, it is essential to critique the methodologies employed by the primary sources. The lit-

erature on AI-augmented software engineering currently uses three distinct methodological

frameworks: quantitative repository mining, qualitative human-centric studies, and experi-

mental benchmarking.

2.2.2.1 Quantitative Repository Mining A significant portion of the analyzed liter-

ature employs repository mining techniques to assess the impact of AI tools on codebases.

Researchers utilizing this method extract data from platforms like GitHub or GitLab to

measure objective changes in development velocity and code characteristics.

For instance, studies such as those by Zuo et al. (Zuo et al., 2024) uses historical data

from pull requests (PRs) to evaluate the efficacy of AI in automating administrative tasks

like PR title generation. The methodological strength of this approach lies in its ecological

validity–it analyzes actual artifacts produced during professional development. Key metrics

typically extracted in these studies include:

• Cycle Time: The duration from the first commit to PR merge.

• Code Churn: The volume of code added, modified, or deleted.

• Acceptance Rate: The percentage of AI-generated suggestions accepted by human

developers.

However, a limitation identified in these methodologies is the difficulty in distinguish-

ing between AI-generated and human-written code without explicit metadata. As noted

by Swaraj et al. (Swaraj et al., 2025), as models improve, the statistical distribution of

AI-generated code features converges with that of human code, making detection–and thus

attribution of “productivity”–increasingly difficult.
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2.2.2.2 Qualitative and Human-Centric Approaches To address the “socio” aspect

of socio-technical systems, researchers employ qualitative methods including surveys, inter-

views, and observational studies. This approach is critical for capturing the “developer

experience” (DevEx) and cognitive load, which quantitative metrics often miss.

Ulfsnes et al. (Ulfsnes et al., 2024) and Smit et al. (Smit et al., 2024) uses these

methods to explore how developers perceive the utility of tools like GitHub Copilot. Their

methodologies often involve: 1. Semi-structured Interviews: Allowing developers to ar-

ticulate trust issues and workflow friction. 2. Likert-Scale Surveys: Quantifying perceived

productivity versus actual output. 3. Thematic Analysis: Coding interview transcripts

to identify recurring friction points, such as the “Reviewer Bottleneck.”

Brandebusemeyer (Brandebusemeyer, 2025) advances this methodology by proposing

the use of physiological sensors (wearables) to measure developer stress and focus objectively.

This represents a methodological shift from self-reported surveys to biometric data, offering

a potential solution to the subjectivity bias inherent in traditional qualitative research.

2.2.2.3 Experimental Benchmarking and Agent Evaluation The third dominant

methodology involves controlled experiments where AI agents are tasked with solving specific

software engineering problems. This is distinct from general LLM benchmarking as it focuses

on domain-specific tasks.

Zhu and Kang (Zhu & Kang, 2025) and Xia et al. (Xia et al., 2024) exemplify this

approach through the use of benchmarks like SWE-Bench. Their methodology involves: -

Task Definition: Selecting real-world GitHub issues (bug reports or feature requests). -

Agent Deployment: Running AI agents (e.g., Agentless) to generate patches. - Valida-

tion: Executing test suites to verify if the patch resolves the issue without regression.

This experimental framework allows for rigorous reproducibility but often lacks the

complexity of enterprise environments where requirements are ambiguous and human stake-

holders are involved.
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2.2.3 Analytical Metrics and Mathematical Models

A critical component of the methodology is defining the metrics used to evaluate AI

performance and impact. The literature has moved beyond simple “accuracy” toward more

nuanced probabilistic and productivity-based metrics.

2.2.3.1 Performance and Detection Metrics In the domain of security and academic

integrity, distinguishing between human and AI code is a primary methodological challenge.

Swaraj et al. (Swaraj et al., 2025) employ standard classification metrics to evaluate detection

approaches. Given the class imbalance often present in these datasets (where AI code might

be a minority or majority depending on the context), the F1-Score is preferred over simple

accuracy.

The F1-Score is defined as the harmonic mean of precision and recall:

𝐹1 = 2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Where Precision and Recall are calculated based on True Positives (TP), False Posi-

tives (FP), and False Negatives (FN):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁

Methodologically, the degradation of these metrics over time serves as an indicator of

increasing model sophistication. As generative models improve, the “perplexity” gap between

human and machine text narrows, necessitating more complex detection methodologies.
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2.2.3.2 Pass@k and Probabilistic Correctness For evaluating code generation capa-

bilities, the literature frequently employs the Pass@k metric. Unlike traditional software

testing where a function either passes or fails, generative AI involves probabilistic outputs.

The Pass@k metric estimates the probability that at least one correct solution is

generated when 𝑘 samples are produced. It is calculated as:

𝑃𝑎𝑠𝑠@𝑘 ∶= 1 − (𝑛−𝑐
𝑘 )

(𝑛
𝑘)

Where: - 𝑛 is the total number of samples generated. - 𝑐 is the number of correct

samples among 𝑛. - 𝑘 is the number of samples selected for evaluation.

This metric is methodologically significant for this thesis because it quantifies the

“human-in-the-loop” requirement. If 𝑘 must be large to ensure a correct solution, the cogni-

tive load on the human reviewer increases, directly contributing to the workflow bottlenecks

identified in the literature review.

Metric Category Specific Metric Application in Literature Formula/Definition

Correctness Pass@k Benchmarking code

generation

1 − (𝑛−𝑐
𝑘 )/(𝑛

𝑘)

Detection F1-Score Identifying AI-generated

code

Harmonic mean of

Precision/Recall

Productivity Cycle Time Workflow analysis 𝑇𝑚𝑒𝑟𝑔𝑒 −

𝑇𝑓𝑖𝑟𝑠𝑡_𝑐𝑜𝑚𝑚𝑖𝑡

Quality Code Churn Maintenance studies Lines added +

modified + deleted

Reliability Hallucination

Rate

Safety evaluation % of outputs with

factual errors
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Table 2: Summary of Analytical Metrics. This table categorizes the mathematical

and operational definitions used across the reviewed studies (Zuo et al., 2024)(Swaraj et al.,

2025)(Zhu & Kang, 2025).

2.2.4 Evaluation of Governance and Compliance Frameworks

A unique aspect of this methodology is the inclusion of regulatory and governance

frameworks as objects of analysis. As AI tools integrate into the software supply chain,

compliance with standards becomes a methodological constraint for development workflows.

This review analyzes the implementation of ISO/IEC 42001, the international

standard for AI Management Systems. As discussed by Seet (Seet, 2025) and Biroğul et

al. (Biroğul et al., 2025), evaluating adherence to this standard involves assessing: 1. Risk

Management: Methodologies for identifying AI-specific risks (e.g., bias, hallucination). 2.

Data Governance: Protocols for training data provenance and leakage prevention. 3.

Traceability: The ability to link AI-generated code back to its prompt and model version.

Furthermore, the methodology examines the role of Software Bill of Materials

(SBOM) in the AI era. Shukla (Shukla, 2025) and Syed (Syed, 2024) highlight that tra-

ditional SBOM methodologies must evolve to include “AI-BOMs” that account for model

weights and training datasets. This thesis evaluates how these emerging standards are re-

shaping the definition of “quality” in software engineering from purely functional correctness

to legal and operational compliance.

2.2.5 Synthesis of Workflow Integration Models

To address the central research question regarding workflow integration, this thesis

employs a comparative analysis of workflow models described in the literature. This involves

mapping the “As-Is” workflow (traditional SE) against the “To-Be” workflow (AI-augmented

SE).
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The analysis draws upon the “Human-Centered Software Engineering” framework

described by Seffah et al. (Seffah et al., 2009) and the trust adoption frameworks proposed

by Barón (Barón, 2025). The methodological step here is to identify friction points where

the introduction of AI tools disrupts established patterns.

Key dimensions of this synthesis include: - The Shift Left: How AI pushes testing

and security concerns earlier in the lifecycle (Jamili et al., 2025). - The Reviewer Role:

How the developer’s role transitions from “writer” to “verifier” (Balachandran & Fawzer,

2025)(Cihan et al., 2025). - Knowledge Transfer: How AI impacts the mentorship and

onboarding of junior developers, a gap highlighted in the literature review.

2.2.6 Limitations of the Methodology

While the narrative review approach allows for a broad synthesis, it carries inherent

limitations that must be acknowledged to contextualize the findings.

Selection Bias: Unlike a systematic review with blinded selection, the narrative

approach relies on the researcher’s selection of “representative” texts. This may inadvertently

favor high-profile studies or those from major tech companies (e.g., Microsoft/GitHub studies

on Copilot) over independent, critical research.

Rapid Obsolescence: The field of Generative AI is moving at a velocity that renders

specific benchmark results obsolete within months. For example, performance metrics for

GPT-3.5 cited in 2023 papers may not reflect the capabilities of GPT-4 or Claude 3.5 in

2025. To mitigate this, the methodology focuses on patterns of interaction and fundamental

workflow shifts rather than static performance numbers.

Lack of Standardized Reporting: As noted in the discussion of repository mining,

there is no standardized method for tagging AI-generated code in version control systems.

This forces reliance on proxy metrics or self-reported data, introducing noise into quantitative

analyses of productivity.
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Ecological Validity of Benchmarks: As highlighted by Zhu and Kang (Zhu &

Kang, 2025), benchmarks like SWE-Bench, while rigorous, may suffer from data leakage

(where the solution is in the training set) or lack the complexity of enterprise legacy systems.

This limitation means that “solved” benchmarks do not necessarily translate to “solved”

industrial problems.

2.2.7 Ethical Considerations in the Review Process

Although this thesis does not involve direct human subject experimentation, ethical

considerations remain essential in the analysis of the literature. The review critically exam-

ines how primary studies handle: - Data Privacy: Particularly in studies mining public

repositories where developer identity might be exposed. - Consent: Whether developers

using AI tools in workplace studies were fully aware of the telemetry being collected. - Bias:

How studies account for the Western-centric bias inherent in most LLM training data and

its impact on global software engineering practices.

By adhering to this multi-faceted methodological framework–combining narrative syn-

thesis, metric analysis, and critical evaluation of governance standards–this thesis aims to

provide a strong answer to how Generative AI is reshaping the professional lives of software

engineers.

2.3 Analysis and Results

[Content for Analysis and Results would follow here…]

2.3 Analysis and Results

The analysis of the selected literature reveals a complex transformation in the domain

of professional software engineering driven by Generative Artificial Intelligence (GenAI). This

section synthesizes findings from 25 primary sources, categorizing the impacts of GenAI

into five distinct analytical dimensions: developer productivity and workflow integration,
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automated quality assurance and code review, security vulnerabilities and supply chain risks,

the emergence of autonomous coding agents, and the necessity of governance frameworks.

The analysis adopts a thematic synthesis approach, aggregating empirical data, case

studies, and theoretical frameworks presented in the cited literature. Rather than viewing

these studies in isolation, this section identifies converging patterns and diverging evidence

regarding the efficacy and safety of AI-augmented development.

2.3.1 Quantitative and Qualitative Impacts on Developer Productivity

A predominant theme in the literature is the quantification of productivity gains

afforded by AI assistants such as GitHub Copilot. However, the analysis reveals a shift

from purely metric-based evaluations (e.g., lines of code per hour) to more comprehensive

assessments of “Developer Experience” (DevEx) and cognitive load.

2.3.1.1 Acceleration of Coding Tasks and Workflow Integration Research consis-

tently indicates that GenAI tools significantly accelerate the “drafting” phase of software

development. Reddy Vootukuri (Reddy Vootukuri, 2025) provides evidence regarding the

integration of GitHub Copilot Chat into the developer workflow, highlighting a reduction

in context switching. Traditionally, developers seeking documentation or syntax examples

would navigate away from their Integrated Development Environment (IDE) to browser-

based search engines or forums like Stack Overflow. The integration of chat interfaces

directly within the IDE preserves the “flow state,” a critical psychological component of

high-productivity engineering.

Smit et al. (Smit et al., 2024) analyze this phenomenon through the lens of the Soft-

ware Engineering Body of Knowledge (SWEBOK). Their findings suggest that productivity

improvements are not uniform across all knowledge areas. While code construction and

maintenance see substantial gains, requirements engineering and design phases show more
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modest improvements, indicating that current GenAI tools are optimized for implementation

rather than architectural conceptualization.

Arora (Arora, 2025) frames this transformation as a fundamental shift in the “write-

debug-maintain” cycle. The analysis suggests that while the time required to write initial

code decreases, the cognitive effort effectively shifts toward review and verification. This

aligns with the “shift-left” philosophy in DevOps, but introduces a “shift-verification” dy-

namic where the developer acts more as an editor than an author.

2.3.1.2 Physiological and Cognitive Measurements of Productivity A novel analyt-

ical perspective is introduced by Brandebusemeyer (Brandebusemeyer, 2025), who explores

the use of wearables to measure developer experience objectively. This research represents a

significant methodological advance over self-reported surveys common in earlier studies. By

correlating physiological signals (such as heart rate variability) with interactions with GenAI

tools, the study provides objective data on cognitive load.

The findings from (Brandebusemeyer, 2025) suggest that while GenAI reduces the

tedium of boilerplate code generation, it may induce intermittent spikes in cognitive load

when the AI produces hallucinated or subtly incorrect code that requires intense scrutiny.

This contradicts the simplified narrative that AI purely reduces mental effort; rather, it alters

the type of mental effort required–from recall and syntax formulation to critical analysis and

pattern recognition.

Table 1: Comparative Analysis of Productivity Assessment Methodologies

Study Methodology Key Metric Primary Finding

(Reddy

Vootukuri,

2025)

Workflow Analysis Context Switching IDE integration reduces

external search time.

(Smit et al.,

2024)

SWEBOK Mapping Task Completion Gains are highest in

construction/maintenance.
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Study Methodology Key Metric Primary Finding

(Brandebusemeyer,

2025)

Biometric/Wearable Physiological Stress AI alters cognitive load

distribution.

(Arora,

2025)

Qualitative Review Dev Cycle Time Shift from writing to

reviewing/debugging.

Table 1: Overview of methodologies used to assess developer productivity in the re-

viewed literature, highlighting the shift from output metrics to cognitive metrics.

2.3.1.3 The “Vibe Coding” Phenomenon The concept of “Vibe Coding” discussed

in (Reddy Vootukuri, 2025) reflects a qualitative shift in how developers interact with code.

This term describes a workflow where the developer guides the AI through natural language

prompts based on the “vibe” or high-level intent, rather than rigorous syntactic specification.

While this lowers the barrier to entry and speeds up prototyping, the literature warns of

the potential degradation of deep code comprehension. If developers become reliant on

the “vibe” of the code being correct without understanding the underlying logic, long-term

maintainability may suffer.

2.3.2 Transformation of Code Review and Quality Assurance

The second major analytical theme focuses on how GenAI is reshaping quality as-

surance (QA) processes, particularly in the context of Pull Requests (PRs) and automated

code reviews. The literature suggests that GenAI is moving beyond simple static analysis

to semantic understanding of code changes.

2.3.2.1 Automated Pull Request Analysis The Pull Request (PR) is a bottleneck in

many modern software delivery pipelines. Zuo et al. (Zuo et al., 2024) present an empirical

study on the potential of Large Language Models (LLMs) to automatically generate PR
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titles and summaries. Their analysis demonstrates that LLMs can effectively summarize

code changes, reducing the administrative burden on developers.

The study evaluates the accuracy of generated titles against human-written baselines.

The results indicate that for small to medium-sized PRs, LLMs achieve high ROUGE scores

(a metric for evaluating automatic summarization), often capturing the intent of the change

more consistently than hurried developers. However, the performance degrades with massive

PRs containing changes across many files, highlighting the limitation of the model’s context

window.

Balachandran and Fawzer (Balachandran & Fawzer, 2025) extend this by proposing

“context-aware” code review. Unlike traditional linters that check for style violations, their

approach uses GenAI to understand the implication of a code change within the broader

system architecture. This addresses a critical gap in automated QA: the ability to detect

logical regressions that are syntactically correct but functionally flawed.

2.3.2.2 AI-Assisted vs. Manual Code Review Cihan et al. (Cihan et al., 2025) provide

a practical analysis of automated code review in industrial settings. Their findings suggest

a dichotomy in adoption: while practitioners welcome the automation of trivial checks (for-

matting, basic logic errors), there remains significant skepticism regarding the AI’s ability

to critique architectural decisions or maintainability concerns.

The study highlights a “trust gap.” Developers are willing to accept AI suggestions

for code completion (where the feedback loop is immediate) but are hesitant to delegate the

gatekeeping function of code review to an AI agent. This resistance is rooted in the fear of

“silent failures,” where an AI reviewer might confidently approve a security vulnerability.

Deloitte’s analysis (Deloitte, 2024) corroborates this, emphasizing that AI in software

quality must be viewed as an augmentation of human judgment rather than a replacement.

They argue for a “human-in-the-loop” model where AI acts as a preliminary filter, highlight-

ing potential issues for human reviewers to investigate.
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Table 2: Efficacy of AI in Code Review Tasks

Task Type AI Performance Human Trust Reference

PR Summarization High High (Zuo et al., 2024)

Syntax Checking High High (Cihan et al., 2025)

Logical Validation Moderate Moderate (Balachandran & Fawzer, 2025)

Architectural Review Low Low (Cihan et al., 2025)

Security Audit Variable Low (Deloitte, 2024)

Table 2: Synthesis of literature findings regarding the performance and developer trust

levels of AI across different code review activities.

2.3.2.3 Formalizing Testing Standards The integration of AI into testing necessi-

tates rigorous standards. Ali and Yue (Ali & Yue, 2015) discuss the formalization of the

ISO/IEC/IEEE 29119 software testing standard. The analysis indicates that existing stan-

dards require adaptation to account for the non-deterministic nature of AI-generated code.

Traditional testing relies on deterministic inputs and outputs; however, when the system un-

der test (or the test generator itself) is an AI, the concept of an “expected result” becomes

fluid. This challenges the foundational axioms of regression testing.

2.3.3 Security Vulnerabilities and Supply Chain Risks

Perhaps the most critical findings in the literature concern the security implications

of widespread GenAI adoption. The analysis identifies a “new attack surface” characterized

by adversarial prompts, poisoned training data, and the rapid propagation of vulnerable

code.

2.3.3.1 Adversarial Code Generation and Detection Swaraj et al. (Swaraj et al.,

2025) present a benchmark dataset for detecting adversarial prompted AI-generated code on

platforms like Stack Overflow. Their research identifies a growing threat vector: malicious
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actors using GenAI to generate code snippets that appear functional but contain subtle

vulnerabilities or backdoors, and then disseminating these on community platforms.

The study evaluates detection approaches, noting that standard AI-text detectors

often fail on code because programming languages have lower entropy and more rigid struc-

tures than natural language. The authors propose enhanced detection mechanisms, but the

“arms race” between generation and detection remains a significant concern. This finding

implies that the “copy-paste” culture of software development is becoming increasingly risky

as the provenance of online code snippets becomes obscured by AI generation.

2.3.3.2 Software Supply Chain Security (SSCS) The security of the software supply

chain is a recurring theme. Syed (Syed, 2024) outlines emerging trends, noting that GenAI

exacerbates existing vulnerabilities by lowering the barrier to entry for attackers. Automated

vulnerability scanning tools (often powered by AI) can be used by attackers to find zero-day

exploits just as easily as they can be used by defenders to patch them.

Aideyan et al. (Aideyan et al., 2025) focus specifically on the automotive software

supply chain. Their analysis of blockchain-reproducible builds suggests that while immutable

ledgers can track provenance, they cannot guarantee the quality of the code itself. If an AI

agent generates vulnerable code that is then signed and committed to the blockchain, the

system merely ensures the integrity of the vulnerability.

2.3.3.3 Automated SBOM Management To mitigate these risks, Shukla (Shukla,

2025) analyzes the role of AI in automating the generation and management of Software

Bill of Materials (SBOM). As software systems become increasingly complex compositions

of open-source libraries, microservices, and AI-generated snippets, maintaining an accurate

inventory is impossible manually.

The research demonstrates that AI-driven SBOM tools can parse dependencies more

deeply than static manifest files, potentially identifying “transitive vulnerabilities” (vulner-
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abilities in dependencies of dependencies). However, the accuracy of these tools is essential;

a false negative in an SBOM can leave a critical system exposed to known exploits.

Table 3: Taxonomy of AI-Driven Security Risks

Risk Category Description Source Mitigation Strategy

Adversarial Code Malicious snippets

on forums

(Swaraj et

al., 2025)

Enhanced detection benchmarks

Supply Chain Vulnerability

propagation

(Syed,

2024)

Automated scanning

Provenance Unknown code

origin

(Aideyan et

al., 2025)

Blockchain/Reproducible builds

Dependency Hidden library

risks

(Shukla,

2025)

AI-driven SBOM generation

Table 3: Classification of security risks associated with GenAI in software engineering

identified in the literature.

2.3.4 The Rise of Autonomous Software Engineering Agents

The literature reveals a trajectory from “copilots” (assistants) to “agents” (au-

tonomous actors). This section analyzes the capabilities and limitations of these agents as

reported in recent benchmarks.

2.3.4.1 Evaluation on SWE-Bench Zhu and Kang (Zhu & Kang, 2025) provide a rigor-

ous evaluation of coding agents on SWE-Bench, a benchmark designed to simulate real-world

software engineering issues. Their tool, UTBoost, highlights the gap between “solving a cod-

ing puzzle” (standard competitive programming benchmarks) and “resolving a GitHub issue”

(SWE-Bench).

The analysis shows that while agents are proficient at isolated algorithm implemen-

tation, they struggle with: 1. Repo-level context: Understanding how a change in one
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file affects a module defined three directories away. 2. Ambiguity resolution: Human

engineers clarify vague requirements; agents tend to hallucinate a specific requirement and

implement it. 3. Error recovery: When a test fails, agents often enter a loop of trying

random permutations rather than reasoning about the failure cause.

2.3.4.2 Agentless Approaches , Xia et al. (Xia et al., 2024) present an “Agentless” ap-

proach to demystifying LLM-based software engineering. Their findings suggest that complex

agentic frameworks (with memory, planning, and tool use) often underperform compared to

simpler, well-structured prompt engineering techniques for certain classes of problems.

This counter-intuitive finding suggests that the complexity of current agent architec-

tures may be introducing noise. A simpler, deterministic process that invokes an LLM for

specific sub-tasks often yields more reliable results than a fully autonomous agent attempt-

ing to “reason” through the entire lifecycle. This has significant implications for industry

adoption, favoring modular tools over monolithic “AI employees.”

2.3.4.3 Trust and Adoption Frameworks Barón (Barón, 2025) proposes an adoption

framework to foster trust in AI-assisted software engineering. The analysis identifies “ex-

plainability” as the primary barrier to the deployment of autonomous agents. If an agent

refactors a codebase, the human maintainer must understand why the changes were made.

The “black box” nature of neural networks conflicts with the engineering requirement for

traceability.

The framework suggests that trust is built through: 1. Transparency: The agent

must cite its sources or reasoning. 2. Controllability: The human must be able to intervene

or revert easily. 3. Reliability: Consistent performance across diverse tasks.
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2.3.5 Governance, Ethics, and Legal Compliance

The final dimension of analysis concerns the governance structures required to man-

age GenAI in professional environments. The literature indicates a rapid maturation of

standards, specifically ISO/IEC 42001.

2.3.5.1 The Role of ISO/IEC 42001 Seet (Seet, 2025) and Biroğul et al. (Biroğul et al.,

2025) provide extensive analysis of the ISO/IEC 42001:2023 standard for AI Management

Systems. This standard provides a framework for organizations to manage the risks and

opportunities associated with AI.

The analysis of (Biroğul et al., 2025) suggests that implementing ISO 42001 impacts

organizational practices by requiring: - Risk Assessments: Specific to AI (e.g., bias, hallu-

cination). - Data Governance: Ensuring training data (or RAG context) does not violate

privacy or IP laws. - Lifecycle Management: Continuous monitoring of model drift.

Rosenbaum (Rosenbaum, 2024) provides a cautionary case study (“In the Matter of

Deloitte Consulting”) highlighting the legal repercussions when AI systems fail in regulated

environments (in this case, Medicaid unwinding). This underscores the finding that “software

engineering” with AI is not just a technical discipline but a legal and ethical one.

2.3.5.2 Collaborative Dynamics and Team Structure Ulfsnes et al. (Ulfsnes et al.,

2024) analyze how GenAI alters collaborative dynamics. Their empirical insights suggest that

while individual productivity might increase, team cohesion can suffer if junior developers

rely on AI rather than mentorship from seniors. The “apprenticeship model” of software

engineering is threatened if the primary teacher is a chatbot.

Furthermore, Wang (Wang, 2025), in a case study on generative AI in design (MINI

Aceman), illustrates the potential for human-AI collaboration to enhance creativity. While

focused on CMF (Color, Material, Finish) design, the parallel to software architecture is
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relevant: AI serves as a generator of variations, while the human acts as the selector and

refiner.

2.3.6 Synthesis of Quantitative Results

To provide a consolidated view of the quantitative findings across the reviewed litera-

ture, the following synthesis aggregates reported metrics regarding performance and accuracy.

Note that direct comparison is often limited by differing baselines and experimental setups.

Mathematical Representation of Efficiency Gains Several studies quantify effi-

ciency using the ratio of task completion time. If 𝑇𝑚𝑎𝑛𝑢𝑎𝑙 is the time taken without AI and

𝑇𝐴𝐼 is the time taken with AI, the Efficiency Gain (𝐸) is defined as:

𝐸 = 𝑇𝑚𝑎𝑛𝑢𝑎𝑙 − 𝑇𝐴𝐼
𝑇𝑚𝑎𝑛𝑢𝑎𝑙

× 100%

While specific values vary, (Smit et al., 2024) and (Arora, 2025) imply 𝐸 values

ranging from 20% to 55% for boilerplate tasks, but 𝐸 approaches 0% or becomes nega-

tive (productivity loss) for complex architectural debugging due to the verification overhead

described in (Brandebusemeyer, 2025).

Accuracy Metrics in Automated Tasks For classification and detection tasks

(e.g., adversarial prompt detection in (Swaraj et al., 2025)), performance is typically evalu-

ated using Precision (𝑃 ) and Recall (𝑅):

𝑃 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃 , 𝑅 = 𝑇 𝑃

𝑇 𝑃 + 𝐹𝑁

Swaraj et al. (Swaraj et al., 2025) report that standard text detectors achieve subop-

timal F1-scores (harmonic mean of 𝑃 and 𝑅) on code datasets, necessitating the specialized

approaches proposed in their benchmark.
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2.3.7 Summary of Analysis

The analysis of the 25 cited sources paints a picture of a discipline in transition. The

“Results” of this literature review can be summarized as follows: 1. Productivity is Real

but Nuanced: Gains are concentrated in coding and maintenance, with a shift in cognitive

load from generation to verification (Reddy Vootukuri, 2025)(Smit et al., 2024)(Brandebuse-

meyer, 2025). 2. Quality Assurance is Automating: PR summaries and context-aware

reviews are viable, but human oversight remains essential for architecture and security (Zuo

et al., 2024)(Balachandran & Fawzer, 2025). 3. Security Risks are Escalating: The

proliferation of AI-generated code introduces supply chain risks and adversarial vectors that

current tools struggle to detect (Swaraj et al., 2025)(Shukla, 2025). 4. Autonomy is

Immature: While agents show promise, they currently lack the robustness required for un-

supervised repo-level engineering (Zhu & Kang, 2025)(Xia et al., 2024). 5. Governance is

Mandatory: The release of ISO 42001 signals the end of the “wild west” era of AI adoption;

compliance and risk management are now central to software engineering management (Seet,

2025)(Biroğul et al., 2025).

These findings set the stage for the Discussion section, which will interpret these

results in the context of the broader future of the software engineering profession.

2.4 Discussion

[Content for Discussion would follow here…]

2.4 Discussion

The synthesis of literature presented in section 2.3 reveals a software engineering

environment undergoing a profound transformation, characterized not merely by increased

speed but by a fundamental restructuring of the development lifecycle. As established in the

literature review (section 2.1), the integration of Generative Artificial Intelligence (GenAI)
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was initially framed through the lens of productivity enhancement and code completion.

However, the analysis of recent empirical studies suggests a more complex reality where the

cognitive burden has shifted from syntax generation to semantic verification. This section

interprets these findings, contrasting them with the theoretical frameworks introduced in

section 2.1, and explores the broader implications for quality assurance, security, governance,

and the future of the engineering profession.

2.4.1 The Cognitive Shift: From Authorship to Verification

The most significant finding emerging from the analysis is the redefinition of “de-

veloper productivity.” While early theoretical models discussed in section 2.1 anticipated

linear efficiency gains, the empirical evidence synthesizes a non-linear reality dominated by

verification overhead.

2.4.1.1 The Verification Bottleneck

The quantitative results analyzed in section 2.3 demonstrate that while code gener-

ation speed has increased, the time required for code review and debugging has expanded

proportionately. This aligns with the “Verification Latency” phenomenon observed in recent

studies. Brandebusemeyer (Brandebusemeyer, 2025) provides critical empirical data using

wearables to measure developer cognitive load, indicating that the mental effort required to

verify AI-generated code often exceeds the effort required to write it manually, particularly

for complex architectural tasks. This confirms the limitations of purely speed-based metrics.

The implications of this shift are profound for the Human-Centered Software En-

gineering (HCSE) framework discussed in section 2.1 ((Seffah et al., 2009)). The HCSE

model traditionally focuses on the interaction between the human and the interface; how-

ever, GenAI introduces a “third agent” into this dyad–the probabilistic model. The developer

is no longer the sole author but rather an editor of stochastic outputs. This transition creates
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a “Reviewer Bottleneck,” where the volume of generated code outpaces the human capacity

to critically evaluate its correctness, security, and maintainability.

Table 1 illustrates the shift in cognitive responsibilities identified across the analyzed

literature.

Domain Traditional Workflow AI-Augmented Workflow Implication

Cognition Synthesis & Logic Analysis & Verification Higher mental

fatigue

Output Low volume, high intent High volume, variable intent Review

saturation

Skill Syntax mastery Prompting & Debugging Skill profile shift

Risk Syntax errors Hallucination & Logic bugs Subtle failure

modes

Table 1: Comparison of Cognitive Demands in Traditional vs. AI-Augmented Engi-

neering based on (Brandebusemeyer, 2025) and (Reddy Vootukuri, 2025).

The productivity gains reported by Reddy Vootukuri (Reddy Vootukuri, 2025) and

Smit et al. (Smit et al., 2024) must therefore be interpreted with caution. While “vibe

coding” or flow-state maintenance is a reported benefit, it often masks the downstream

costs of technical debt accumulation. If developers accept AI suggestions without rigorous

verification–a tendency exacerbated by automation bias–the long-term maintainability of

the codebase may degrade. This validates the concerns raised in section 2.1 regarding the

potential for a “quality crisis” hidden behind short-term velocity metrics.

2.4.1.2 Impact on Junior Developer Development

A critical theoretical implication of this cognitive shift is the potential erosion of

learning pathways for junior engineers. The literature suggests that the struggle with syntax

and basic logic–the very tasks now automated by tools described in (Arora, 2025)–is essential
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for building the mental models required for high-level architectural reasoning. If junior

developers rely on GenAI for code generation, they may bypass the “productive struggle”

necessary for skill acquisition. While not explicitly longitudinal, the snapshot provided by

Ulfsnes et al. (Ulfsnes et al., 2024) regarding collaboration patterns suggests that reliance on

AI might reduce peer-to-peer mentorship interactions, isolating junior developers in a loop

of prompt-response rather than human-guided learning.

2.4.2 The Evolution of Automated Quality Assurance

The findings in section 2.3 regarding automated pull request (PR) analysis indicate

that GenAI is moving beyond code generation into the field of quality assurance (QA). This

represents a maturation of the technology from a “writer” to a “reviewer.”

2.4.2.1 Context-Aware Review Mechanisms

Traditional static analysis tools (linters) focus on syntax and style. In contrast, the

context-aware review capabilities described by Balachandran and Fawzer (Balachandran &

Fawzer, 2025) and Cihan et al. (Cihan et al., 2025) represent a leap forward in semantic

analysis. These tools can interpret the intent of a code change, not just its structure. The

ability to generate automatic PR titles and summaries, as analyzed by Zuo et al. (Zuo et al.,

2024), streamlines the administrative aspect of code review, theoretically freeing up human

reviewers to focus on logic and architecture.

However, the literature warns against over-reliance on these automated reviewers.

The “hallucination” risk inherent in LLMs means that an AI reviewer might confidently

approve flawed code or flag correct code as erroneous. The study by Deloitte (Deloitte, 2024)

emphasizes that while AI can augment the QA process, it cannot yet replace the “human in

the loop” for critical systems. The nuance here is that AI is excellent at identifying patterns

and inconsistencies but lacks the “grounding” in business requirements that a human reviewer

possesses.
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2.4.2.2 The Paradox of Automated PR Generation

There is a paradoxical risk identified in the synthesis of Zuo et al. (Zuo et al., 2024) and

Cihan et al. (Cihan et al., 2025). As developers use AI to generate code, and then use AI to

generate the PR description, and potentially use AI to review the PR, the entire pipeline risks

becoming a “closed loop” of AI artifacts with diminishing human oversight. This alignment

of AI-generated inputs and outputs could lead to “drift,” where the software deviates from

user needs or architectural standards without detection, as the human verifier is gradually

pushed out of the loop by the seeming coherence of the AI-generated documentation.

2.4.3 Security Implications and the Supply Chain

The analysis in section 2.3 highlighted security as a primary area of concern. The

literature reviewed in this section paints a disturbing picture of an escalating arms race

between AI-assisted defense and AI-enabled attacks.

2.4.3.1 The Challenge of Adversarial Code

The findings by Swaraj et al. (Swaraj et al., 2025) regarding adversarial prompted

code on platforms like Stack Overflow are particularly alarming. The inability of standard

text detectors to reliably identify AI-generated code means that vulnerable or malicious

snippets can permeate the software supply chain undetected. This directly challenges the

assumption in earlier literature that open-source repositories are self-correcting ecosystems.

If the volume of AI-generated noise overwhelms the community’s capacity to curate content,

the reliability of shared knowledge bases degrades.

2.4.3.2 Supply Chain Transparency and SBOMs

To mitigate these risks, the literature points toward rigorous supply chain manage-

ment. The automated generation of Software Bill of Materials (SBOM) discussed by Shukla
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(Shukla, 2025) becomes not just a compliance requirement but a security necessity. In an

era where code snippets are synthesized from vast, opaque training datasets, understanding

the provenance of software components is important.

Syed (Syed, 2024) and Aideyan et al. (Aideyan et al., 2025) extend this argument to

the automotive and critical infrastructure sectors, suggesting that the integrity of the soft-

ware supply chain is now a matter of public safety. The “black box” nature of GenAI models

makes provenance tracking difficult; if a model generates a vulnerability, tracing it back to

a specific training example is often impossible. This necessitates a shift from “preventing”

vulnerabilities in training data (which is difficult) to “detecting” and “managing” them via

strong SBOMs and post-deployment monitoring.

Table 2 summarizes the security vectors introduced by GenAI and the corresponding

mitigation strategies found in the literature.

Threat Vector Description Mitigation Strategy Source

Adversarial Code Malicious snippets

in training

data/output

Specialized detection

benchmarks

(Swaraj et

al., 2025)

Supply Chain

Opacity

Unknown origin of

generated

dependencies

AI-Driven SBOM generation (Shukla,

2025)

Vulnerability

Injection

AI suggesting

insecure patterns

Blockchain-reproducible builds (Aideyan et

al., 2025)

Trust Deficit Lack of confidence

in AI outputs

Adoption frameworks/ISO

42001

(Barón,

2025)

Table 2: Security Threats and Mitigations in AI-Augmented Software Engineering.
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2.4.4 Governance, Compliance, and ISO 42001

Perhaps the most mature development identified in the literature is the transition

from experimental adoption to regulated governance. The release of ISO/IEC 42001:2023

represents a watershed moment for the industry, signaling the end of the “wild west” era of

AI adoption.

2.4.4.1 The Role of Standardization

As discussed in section 2.3, the works of Seet (Seet, 2025) and Biroğul et al. (Biroğul

et al., 2025) emphasize that AI governance is no longer optional. ISO 42001 provides a

framework for managing the risks associated with AI systems, requiring organizations to

implement controls around data quality, model bias, and system transparency. This aligns

with the formalization trends seen in other engineering disciplines (e.g., ISO 29119 for testing

(Ali & Yue, 2015)).

The implications of this standard are far-reaching. Organizations can no longer deploy

GenAI tools like Copilot without a formal policy regarding data privacy (input leakage)

and code ownership (output rights). The legal analysis by Rosenbaum (Rosenbaum, 2024)

regarding the Deloitte/Medicaid case serves as a stark warning: when AI systems fail in

high-stakes environments, the liability falls on the organization that deployed them, not the

algorithm. This underscores the necessity of the “Human-in-the-Loop” not just for quality,

but for legal accountability.

2.4.4.2 Trust Frameworks

Barón (Barón, 2025) proposes an adoption framework to foster trust, arguing that

technical excellence is insufficient for adoption. Trust is built through transparency, reli-

ability, and compliance. The integration of GenAI into the software development lifecycle

(SDLC) requires a “Trust Architecture” where developers, managers, and stakeholders under-
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stand the limitations and provenance of the AI tools they use. This framework addresses the

psychological barrier to adoption–developers will not use tools they do not trust, or worse,

they will use them blindly without understanding the risks.

2.4.5 The Limits of Autonomy: Agents vs. Assistants

A critical distinction emerging from the comparison of findings in section 2.3 is the gap

between “Assistants” (like GitHub Copilot) and “Agents” (autonomous software engineers).

2.4.5.1 The Robustness Gap

While assistants have found widespread adoption (Reddy Vootukuri, 2025), au-

tonomous agents remain in the experimental phase. The evaluation of coding agents on

benchmarks like SWE-bench by Zhu and Kang (Zhu & Kang, 2025) and Xia et al. (Xia et

al., 2024) reveals a significant “robustness gap.” Agents often fail to understand the broader

context of a repository, making changes that are locally correct (syntactically valid) but

globally destructive (breaking dependencies or architectural constraints).

This finding contradicts the more optimistic projections of fully autonomous software

engineering often seen in grey literature. The academic consensus suggests that for the

foreseeable future, GenAI will function as a “force multiplier” for human intelligence rather

than a replacement. The complexity of maintaining large-scale, legacy codebases requires

a level of contextual understanding and long-term planning that current LLM-based agents

struggle to achieve.

2.4.5.2 Cloud and Scale Implications

The deployment of these intelligent systems also introduces infrastructure challenges.

Jamili et al. (Jamili et al., 2025) discuss the framework for intelligent cloud systems required

to support secure and sustainable AI at scale. Running autonomous agents that continuously

analyze and refactor code requires significant computational resources, raising questions
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about the environmental impact and cost-benefit ratio of autonomous engineering compared

to human-guided development.

2.4.6 Synthesis with Research Gaps

Referring back to the research gaps identified in section 2.1, the findings from this

review address several key areas while highlighting new ones.

1. Gap: Lack of Empirical Data on Workflow Integration.

• Addressed: Studies by Ulfsnes et al. (Ulfsnes et al., 2024) and Reddy Vootukuri (Reddy

Vootukuri, 2025) provide concrete empirical data on how developers actually integrate

these tools, moving beyond theoretical speculation.

2. Gap: Understanding the “Human” Element.

• Addressed: Brandebusemeyer (Brandebusemeyer, 2025) and Seffah et al. (Seffah et al.,

2009) bridge the gap between software engineering and human-computer interaction,

quantifying the cognitive load of AI interaction.

3. Gap: Security in the AI Era.

• Addressed: The work on adversarial prompts (Swaraj et al., 2025) and SBOMs (Shukla,

2025) establishes a baseline for security research in this domain.

However, a significant gap remains regarding the longitudinal impact of these tools.

Most studies cited are cross-sectional or short-term experiments. The industry lacks data on

how codebases maintained primarily by AI evolve over 3-5 years. Does the “drift” mentioned

in section 2.4.2 lead to unmaintainable legacy systems? This remains an open question.

2.4.7 Limitations of the Reviewed Literature

While the reviewed studies provide valuable insights, several limitations must be

acknowledged to contextualize the discussion.
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2.4.7.1 Predominance of Short-Term Studies

As noted above, the majority of the empirical evidence (Zuo et al., 2024)(Reddy

Vootukuri, 2025)(Zhu & Kang, 2025) relies on short-term observations, snapshot surveys,

or controlled benchmarks (like SWE-bench). There is a scarcity of longitudinal studies

that track the lifecycle of AI-generated code from inception to deprecation. Consequently,

conclusions regarding “maintainability” are largely theoretical or based on proxy metrics

rather than historical data.

2.4.7.2 Bias Toward Quantitative Metrics

Much of the literature focuses on quantitative metrics such as lines of code, commit

frequency, or task completion time (Smit et al., 2024)(Brandebusemeyer, 2025). While

valuable, these metrics often fail to capture the qualitative aspects of software engineering,

such as creativity, architectural elegance, and user satisfaction. The study by Wang (Wang,

2025) on generative design touches on this, but in the field of pure code, “quality” remains

a difficult attribute to measure at scale.

2.4.7.3 Rapid Obsolescence

The field of GenAI is moving so rapidly that literature published in early 2024 may al-

ready describe outdated model capabilities. For instance, the limitations of agents described

by Xia et al. (Xia et al., 2024) might be overcome by the next generation of models (e.g.,

GPT-5 or equivalent) before this review is fully disseminated. This necessitates a continu-

ous review process, as static literature reviews struggle to keep pace with the technology’s

velocity.
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2.4.8 Future Research Directions

Based on the interpretation of findings and the identified limitations, several avenues

for future research emerge.

2.4.8.1 The “Junior Developer Crisis”

Research is urgently needed to investigate the long-term impact of AI on skill acqui-

sition. Longitudinal studies tracking cohorts of junior developers–one group using heavy AI

assistance, one using limited assistance–would provide critical data on whether these tools

inhibit or accelerate the development of deep technical expertise.

2.4.8.2 AI-Specific Technical Debt

Future work should define and measure “AI Technical Debt.” Researchers need to

develop metrics to quantify the complexity and readability of AI-generated code compared

to human-written code over time. Does AI code degenerate faster? Does it require more

frequent refactoring? Answering these questions requires analyzing repository history in

organizations that have adopted GenAI at scale.

2.4.8.3 Human-Agent Teaming Protocols

As agents become more capable, research must shift from “tool adoption” to “teaming

protocols.” How do humans and autonomous agents negotiate conflict? If an agent refactors

code that the human prefers to keep legacy, whose preference takes precedence? Developing

governance protocols for this interaction, building on the work of Barón (Barón, 2025) and

ISO 42001 (Seet, 2025), will be essential.
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2.4.9 Conclusion of Discussion

The integration of GenAI into professional software engineering is not a simple au-

tomation story; it is a complex reconfiguration of the socio-technical system of development.

The literature confirms that while productivity gains are real, they are achieved by shifting

effort from creation to verification. This shift introduces new risks in security and quality

assurance that require rigorous governance and “human-in-the-loop” oversight.

The findings from the cited literature (Reddy Vootukuri, 2025)(Brandebusemeyer,

2025)(Seet, 2025) collectively suggest that the future of software engineering will not be

defined by the ability to write code, but by the ability to orchestrate, verify, and govern the AI

systems that write it. The profession is evolving from “coding” to “system specification and

verification,” validating the theoretical trajectory toward higher-level abstraction discussed in

section 2.1. As organizations navigate this transition, the focus must remain on the principles

of Human-Centered Software Engineering (Seffah et al., 2009), ensuring that these powerful

tools serve to augment human capability rather than replace the critical thinking that defines

the engineering discipline.
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3. Conclusion

The integration of Generative Artificial Intelligence (GenAI) into professional soft-

ware engineering workflows represents a transformation far more profound than a mere up-

grade in tooling efficiency. This thesis has explored the complex impact of GenAI, moving

beyond the initial hype of code completion to analyze the structural changes in how software

is conceived, constructed, verified, and maintained. The research demonstrates that the in-

dustry is currently navigating a critical inflection point: a transition from syntax-focused

manual coding to semantic-focused AI orchestration. This conclusion synthesizes the pri-

mary findings regarding adoption patterns, productivity shifts, and governance challenges,

while outlining the theoretical and practical implications for the future of the discipline.

3.1 Summary of Findings

The investigation into the adoption and utilization of GenAI by professional software

engineers reveals a environment characterized by rapid integration but uneven maturity. The

core findings of this research can be categorized into three distinct dimensions: the evolution

of the developer role, the automation of peripheral engineering tasks, and the emergence of

new security paradigms.

First, the primary function of the software engineer is shifting from “writer” to “re-

viewer.” As evidenced by the widespread adoption of tools like GitHub Copilot Chat (Reddy

Vootukuri, 2025) and various code assistants (Arora, 2025), developers are increasingly spend-

ing their cognitive energy on prompt engineering and code verification rather than syntactic

construction. This shift validates the “synthetic pair programmer” model, where AI serves

not merely as an autocomplete function but as an active collaborator in the development

lifecycle (Ulfsnes et al., 2024). However, this transition is not without friction; trust remains

a volatile variable, heavily dependent on the transparency and explainability of the AI’s

suggestions (Barón, 2025).
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Second, the scope of automation has expanded beyond simple code generation to

encompass complex, context-aware engineering tasks. Recent advancements have enabled

Large Language Models (LLMs) to automate the generation of Pull Request (PR) titles and

descriptions with high accuracy, streamlining the code review process and reducing admin-

istrative overhead (Zuo et al., 2024). Furthermore, the industry is witnessing a divergence

in automated approaches, characterized by the debate between agent-based architectures

and “agentless” approaches that uses simple, two-phase processes for software engineering

tasks (Xia et al., 2024). This indicates that while the capability for autonomy exists, the

industry is still determining the optimal balance between complex autonomous agents and

deterministic, controllable workflows.

Third, the proliferation of AI-generated code has necessitated a rigorous overhaul of

quality assurance and security protocols. The ease of generating code has led to a volume

of output that challenges traditional manual review processes (Cihan et al., 2025). Conse-

quently, there is a rising necessity for automated, context-aware code review tools that can

integrate GenAI to filter and analyze contributions before they reach human reviewers (Bal-

achandran & Fawzer, 2025). Simultaneously, the security environment has darkened with

the potential for adversarial prompting, where malicious actors manipulate AI to inject vul-

nerabilities, requiring new benchmark datasets and detection mechanisms for AI-generated

code on platforms like Stack Overflow (Swaraj et al., 2025).

3.2 Theoretical Implications

This research contributes significantly to the theoretical understanding of Human-

Centered Software Engineering (HCSE). Historically, HCSE frameworks focused on the

usability of the software being created; however, the introduction of GenAI necessitates

applying HCSE principles to the development tools themselves (Seffah et al., 2009).
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3.2.1 Cognitive Load Redistribution

The findings suggest a fundamental redistribution of cognitive load. Traditional soft-

ware engineering theory posits that the “hard” work lies in the translation of abstract logic

into concrete syntax. GenAI inverts this. The syntax generation becomes trivial, while the

evaluation of semantic correctness becomes the primary cognitive burden. This aligns with

recent studies using wearables to measure developer experience, which indicate that objec-

tive physiological measures are needed to understand the true impact of AI interactions on

developer stress and flow states (Brandebusemeyer, 2025). The theoretical model of the de-

veloper must therefore evolve to include “verification literacy”–the ability to quickly discern

subtle logic errors in syntactically perfect code–as a core competency.

3.2.2 The Trust-Adoption Cycle

The research also refines the theoretical models of technology adoption in engineer-

ing contexts. The adoption of GenAI does not follow a linear path based solely on utility.

Instead, it follows a “Trust-Adoption Cycle” where adoption is contingent on the establish-

ment of trust frameworks (Barón, 2025). Unlike deterministic compilers where an error is

explicit, probabilistic AI models introduce ambiguity. Therefore, theoretical frameworks for

AI-assisted engineering must incorporate uncertainty management as a central component

of the development lifecycle.

3.3 Practical Implications for Industry

The transition to AI-augmented software engineering carries profound practical im-

plications for organizations, practitioners, and policymakers. The era of ad-hoc adoption is

ending, replaced by a need for structured governance and strategic integration.
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3.3.1 Governance and Standardization

As GenAI becomes critical infrastructure, organizations can no longer rely on infor-

mal usage policies. The emergence of standards such as ISO/IEC 42001:2023 represents a

maturation of the field, providing a necessary framework for managing AI systems respon-

sibly (Seet, 2025). Implementing such standards is important for mitigating legal risks and

ensuring that AI adoption aligns with organizational values and compliance requirements

(Biroğul et al., 2025). Companies must move from viewing AI as a developer productivity

perk to viewing it as a managed asset subject to rigorous audit trails and quality controls

(Deloitte, 2024).

3.3.2 Supply Chain Security

The practical definition of “secure code” has expanded. With the integration of AI,

the software supply chain now includes the provenance of the data used to train models and

the integrity of the prompts used to generate code. Automated generation and management

of Software Bill of Materials (SBOMs) have become essential to track the lineage of AI-

generated components and open-source dependencies (Shukla, 2025). This is particularly

critical in high-stakes industries like automotive software, where supply chain vulnerabilities

can have physical safety implications (Aideyan et al., 2025). Security teams must adapt to

detect “hallucinated packages” and subtle logic flaws that escape traditional static analysis

tools (Syed, 2024).

3.3.3 Redefining Productivity Metrics

The findings indicate that traditional metrics like “lines of code” (LOC) are rendered

obsolete by GenAI. When a developer can generate hundreds of lines of boilerplate in seconds,

LOC becomes a measure of AI latency rather than human productivity. Industry leaders

must pivot toward outcome-based metrics, such as “time to value,” “bug density per feature,”

and “review cycle time” (Smit et al., 2024). The focus must shift from the quantity of code
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produced to the quality of the architectural decisions made and the robustness of the system

design.

Table 3.1 summarizes the key shifts identified in this research and their direct impli-

cations for industry stakeholders.

Domain Traditional State AI-Augmented State Industry Implication

Workflow Manual coding &

lookup

Prompting &

verification

Shift hiring focus to

architectural

thinking

Review Human-only review AI-filtered + Human

review

Implement

context-aware

automated review

tools (Balachandran

& Fawzer, 2025)

Security Vulnerability

scanning

Adversarial defense Mandate AI-specific

SBOMs &

provenance tracking

(Shukla, 2025)

Governance Internal policy ISO 42001 Standards Formalize AI

management systems

(AIMS) (Seet, 2025)

Metrics Lines of Code /

Velocity

Acceptance Rate /

Quality

Adopt objective

measures of

developer experience

(Brandebusemeyer,

2025)

Table 3.1: Strategic Implications of GenAI Adoption in Software Engineering.
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The table above illustrates the comprehensive nature of the required transformation.

Organizations that attempt to layer AI tools on top of traditional workflows without adjust-

ing their governance, security, and metric systems are likely to experience increased technical

debt rather than genuine productivity gains.

3.4 Limitations of the Study

While this research provides a comprehensive overview of the current state of GenAI in

software engineering, several limitations must be acknowledged. First, the field is evolving at

a velocity that outpaces the traditional academic publication cycle. Capabilities of models

discussed (e.g., GPT-4 class models) may be superseded by next-generation architectures

during the dissemination of this thesis.

Second, much of the data regarding productivity gains relies on self-reported metrics

or controlled experiments (such as SWE-bench evaluations) (Zhu & Kang, 2025). While

valuable, these environments do not fully capture the complexity of legacy codebases and

the “messy” reality of enterprise software development. The long-term maintenance costs of

AI-generated code remain largely theoretical, as these tools have not been in widespread use

long enough to observe the full lifecycle of AI-heavy codebases over 5-10 years.

Third, the scope of this research heavily emphasizes text-based coding tasks. While

emerging areas like generative design for physical products (e.g., smart cabin design) (Wang,

2025) and cloud system orchestration (Jamili et al., 2025) were touched upon, the primary

focus remained on source code generation. The impact of multimodal models that can reason

across diagrams, code, and UI mockups simultaneously represents a frontier that was only

partially explored.
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3.5 Future Research Directions

The findings of this thesis point toward several critical avenues for future research. As

the novelty of code generation fades, the focus must shift toward the long-term sustainability

of AI-centric development ecosystems.

3.5.1 The Long-Term Impact on Skill Acquisition

A pressing question remains regarding the pedagogy of software engineering. If junior

developers rely on AI for code synthesis, do they fail to develop the deep mental models

required for debugging and architecture? Future longitudinal studies are needed to track the

skill progression of “AI-native” developers versus those trained in traditional methods.

3.5.2 Autonomous Agents vs. Human-in-the-Loop

The dichotomy between “agentless” approaches and fully autonomous agents requires

rigorous empirical testing. While current research validates the efficacy of simple, agentless

workflows for specific tasks (Xia et al., 2024), the potential for autonomous agents to handle

ambiguous, multi-step refactoring tasks remains high. Future work should evaluate the error

rates and “drift” of autonomous agents in production environments over extended periods.

3.5.3 Legal and Ethical Compliance

As governments impose stricter regulations on AI, the intersection of software engi-

neering and law will become a fertile ground for research. Investigating how technical teams

can implement “compliance by design” using GenAI tools–ensuring that generated code au-

tomatically adheres to standards like ISO 42001 or GDPR–will be essential (Rosenbaum,

2024)(Biroğul et al., 2025).
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3.5.4 Sustainable AI Computing

Finally, the environmental impact of widespread AI adoption in development cannot

be ignored. The computational cost of running massive inference models for every line of code

suggests a need for “sustainable AI” frameworks. Research into optimizing cloud systems for

efficient AI orchestration (Jamili et al., 2025) will be vital to ensure that the productivity

gains of GenAI do not come at an unacceptable environmental cost.

Table 3.2 outlines a proposed agenda for future research based on the gaps identified

in this study.

Research Theme Key Question

Methodological

Approach Potential Impact

Pedagogy Does AI hinder deep

learning?

Longitudinal skill

tracking

Reform of CS

education

Autonomy Agentless vs. Agents? Comparative

benchmarks

Optimization of tool

design

Reliability Long-term code

maintainability

Repository mining

(3+ years)

TCO models for AI

code

Ethics Automated

compliance?

Case studies on ISO

42001

Risk reduction

frameworks

Table 3.2: Proposed Future Research Agenda.

3.6 Final Remarks

The integration of Generative AI into software engineering is not a transient trend but

a foundational restructuring of the discipline. This thesis has demonstrated that while the

productivity benefits are tangible, they are accompanied by significant challenges in trust,

security, and governance. The “black box” nature of deep learning models introduces a layer

of probabilistic uncertainty into a field that has historically prized deterministic precision.
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Success in this new era will not be defined by which organization accesses the most

powerful model, but by which organization best adapts its human processes to govern these

powerful tools. The future software engineer will not merely be a writer of code, but an

architect of systems, a guardian of quality, and an orchestrator of artificial intelligence. As

we move forward, the synergy between human creativity and artificial efficiency will define

the next generation of software innovation, provided that we remain vigilant regarding the

quality, security, and ethical implications of the code we co-create with machines. The shift

is inevitable; the outcome depends on the rigor with which we manage the transition.
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4. Appendices

4.1 Appendix A: Conceptual Framework for AI-Augmented Soft-

ware Engineering

This appendix details the theoretical models developed and utilized throughout this

thesis to analyze the integration of Generative AI (GenAI) into professional software engineer-

ing workflows. The framework synthesizes Human-Centered Software Engineering (HCSE)

principles with modern AI-agent interaction models to describe the shift from linear devel-

opment lifecycles to recursive, AI-assisted loops.

4.1.1 The Cognitive Shift Model

The primary conceptual contribution of this research is the “Cognitive Shift Model,”

which illustrates the transition of the software engineer’s role from a primary generator of

syntax to a verifier of semantic intent. This model draws heavily on the foundational work of

Seffah et al. Regarding HCSE (Seffah et al., 2009), adapting it for the era of Large Language

Models (LLMs).

The following table contrasts the cognitive demands and workflow steps of the Tradi-

tional Development Lifecycle (TDL) against the AI-Augmented Lifecycle (AAL).

Lifecycle

Phase

Traditional Cognitive

Load

AI-Augmented

Cognitive Load

Dominant Interaction

Mode

Requirements High: Abstract to

Concrete

Medium: Prompt

Formulation

Natural Language

Prompting

Coding High: Syntax

Generation

Low: Syntax

Verification

Review & Refinement

Debugging High: Root Cause

Analysis

Medium: Hypothesis

Validation

Interactive Chat
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Lifecycle

Phase

Traditional Cognitive

Load

AI-Augmented

Cognitive Load

Dominant Interaction

Mode

Testing High: Test Case

Creation

Low: Coverage Analysis Automated Generation

Maintenance High: Legacy

Comprehension

Medium: Context

Retrieval

Semantic Search

Table A1: Comparison of Cognitive Loads in Traditional vs. AI-Augmented Lifecycles.

Adapted from (Ulfsnes et al., 2024) and (Seffah et al., 2009).

In the Traditional Development Lifecycle, the engineer bears the cognitive burden

of translating abstract requirements directly into syntactically correct code. This process

requires maintaining a high “working memory” of the codebase’s structure and language-

specific syntax. However, in the AI-Augmented Lifecycle, the cognitive load shifts. As noted

by Ulfsnes et al. (Ulfsnes et al., 2024), the interaction moves toward “prompt engineering”

and output verification. The engineer no longer recalls syntax from memory but instead

evaluates the AI’s suggestion for correctness, security, and context.

This shift necessitates a re-evaluation of developer productivity. Traditional metrics

focus on lines of code (LOC) or commit frequency. However, under the Cognitive Shift

Model, productivity is better understood through the lens of “decision density”–the number

of architectural or logical decisions a developer makes per hour, rather than the volume of

text produced. Brandebusemeyer (Brandebusemeyer, 2025) suggests that measuring this

experience requires novel approaches, such as wearable technology or advanced telemetry, to

capture the physiological and objective reality of this new workflow.

4.1.2 The Trust and Adoption Matrix

Building on the work of Barón (Barón, 2025), this framework incorporates a Trust

and Adoption Matrix to explain the variance in GenAI tool usage across different engineering
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seniority levels and organizational types. Adoption is not merely a function of tool availability

but a complex interplay of trust, perceived utility, and institutional governance.

Adoption Stage Key Driver Primary Barrier Governance Focus

Experimental Individual Curiosity Lack of Access Shadow AI Prevention

Assisted Productivity Gains Accuracy/Hallucination Data Privacy

Augmented Workflow Integration Context Limitations Quality Assurance

Autonomous Agentic Delegation Accountability/Trust Liability & Ethics

Table A2: Stages of AI Adoption in Software Engineering Organizations. Based on

(Barón, 2025) and (Xia et al., 2024).

The transition from “Assisted” to “Augmented” represents the current current for

most mature engineering organizations. In the Assisted stage, tools like GitHub Copilot are

used primarily for autocomplete functions (Reddy Vootukuri, 2025). The move to the Aug-

mented stage involves deep integration into the CI/CD pipeline, where AI tools automatically

generate pull request titles, summaries, and code reviews (Zuo et al., 2024)(Balachandran &

Fawzer, 2025).

The final stage, “Autonomous,” involves the deployment of agentic workflows where

LLMs plan and execute multi-step engineering tasks with minimal human intervention. Re-

search into “Agentless” frameworks and rigorous evaluation benchmarks like SWE-bench

(Zhu & Kang, 2025)(Xia et al., 2024) highlights that while we are approaching this stage,

significant barriers regarding trust and error propagation remain. The Trust and Adoption

Matrix suggests that organizations cannot successfully leap to autonomous agents without

first establishing strong governance protocols in the earlier stages.
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4.2 Appendix B: Supplementary Data and Metrics

This appendix provides detailed supplementary data supporting the analysis of pro-

ductivity, security, and code quality in AI-augmented software engineering. The data syn-

thesizes findings from multiple empirical studies cited in the main body of the thesis.

4.2.1 Productivity and Workflow Metrics

The impact of GenAI on developer productivity is complex. The following data

breakdown illustrates the dichotomy between “perceived productivity” (how fast developers

feel they are working) and “objective throughput” (actual system output).

Metric Category

Traditional

Benchmark AI-Assisted Result Impact Factor Citation

Task

Completion

Baseline (1.0x) 1.26x - 1.55x Faster High Positive (Smit et

al., 2024)

Code Review

Time

60-90 mins/PR 30-45 mins/PR High Positive (Balachandran

& Fawzer,

2025)

Context Switch 15-20 mins recovery Reduced

interruption

Medium

Positive

(Reddy

Vootukuri,

2025)

Debugging Time High variance Standardized

reduction

High Positive (Arora,

2025)

Table B1: Aggregated Productivity Metrics from Empirical Studies.

The data indicates a consistent reduction in time-on-task for routine coding activities.

Smit et al. (Smit et al., 2024) report significant gains in task completion velocity when

developers uses tools like GitHub Copilot. Specifically, the “blank page problem”–the initial

inertia of starting a new module–is virtually eliminated. Furthermore, Balachandran and
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Fawzer (Balachandran & Fawzer, 2025) demonstrate that AI-integrated code review tools

significantly reduce the latency of Pull Request (PR) cycles by automating the generation

of summaries and initial vulnerability scans.

However, these gains are not uniform. Zuo et al. (Zuo et al., 2024) emphasize that

while AI can generate PR titles and descriptions effectively, the accuracy of these genera-

tions relies heavily on the quality of the diffs and the context provided. If the underlying

code changes are complex or poorly structured, the AI’s summarization capabilities degrade,

potentially requiring more time for human correction than manual writing would have taken.

4.2.2 Security and Supply Chain Vulnerabilities

A critical finding of this thesis is the introduction of new attack vectors through AI-

generated code. The data below categorizes the prevalence of specific security risks identified

in AI-assisted development environments.

Risk Category Description Detection Difficulty Mitigation Strategy

Adversarial Code Maliciously prompted injection High Enhanced Benchmarks

Hallucination Non-existent libraries/APIs Medium SBOM Verification

Supply Chain Dependency confusion High Blockchain/SBOM

Data Leakage Training data exposure Medium Local LLM Hosting

Table B2: Taxonomy of AI-Introduced Security Risks. Sources: (Swaraj et al., 2025),

(Shukla, 2025), (Aideyan et al., 2025).

Swaraj et al. (Swaraj et al., 2025) provide a benchmark dataset revealing that adver-

sarial prompting can trick generic LLMs into generating insecure code patterns that bypass

standard static analysis tools. This is particularly dangerous in community-driven platforms

like Stack Overflow, where AI-generated answers may propagate vulnerabilities to thousands

of developers.
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Furthermore, the software supply chain faces new pressures. Shukla (Shukla, 2025)

argues that the ease of generating code increases the volume of third-party dependencies in-

cluded in projects. This necessitates the automated generation and management of Software

Bill of Materials (SBOMs). Without automated SBOM management, the opacity of AI-

generated codebases makes it nearly impossible to track vulnerability propagation. Aideyan

et al. (Aideyan et al., 2025) propose using blockchain-reproducible builds to counter this, en-

suring that the provenance of every line of code–whether human or AI-written–is immutable

and traceable.

4.2.3 Governance and Compliance Standards

The rapid adoption of GenAI has outpaced regulation, but standards are emerging.

The following table outlines the key components of ISO/IEC 42001:2023 as they apply to

software engineering organizations.

ISO 42001 Domain Engineering Application Compliance Requirement Citation

Risk Management AI Code Safety Auto-testing protocols (Biroğul et

al., 2025)

Data Quality Training Data Vetting Clean data pipelines (Seet,

2025)

Transparency Explainability Decision logging (Biroğul et

al., 2025)

Lifecycle Mgmt Model Updates/Versioning CI/CD Integration (Jamili et

al., 2025)

Table B3: Application of ISO/IEC 42001:2023 to Software Engineering. Sources:

(Seet, 2025), (Biroğul et al., 2025).

Biroğul et al. (Biroğul et al., 2025) emphasize that ISO 42001 provides the first com-

prehensive framework for managing AI systems organizationally. For software engineering
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leaders, this means moving beyond ad-hoc tool adoption to a structured management system

that accounts for legal liability and ethical deployment. Seet (Seet, 2025) notes that legal

compliance is no longer optional; as AI tools become embedded in critical infrastructure,

adherence to these standards will likely become a prerequisite for liability insurance and

regulatory approval.

4.3 Appendix C: Glossary of Terms

This glossary defines key technical terms used throughout the thesis, contextualizing

them within the specific domain of AI-augmented software engineering.

Adversarial Prompting A technique where malicious inputs are designed to manip-

ulate an AI model into producing harmful, incorrect, or insecure outputs. In the context of

software engineering, this involves crafting prompts that cause coding assistants to generate

vulnerabilities or bypass security filters (Swaraj et al., 2025).

Agentless Framework A software engineering approach that uses Large Language

Models (LLMs) for code generation and repair without the complex state management of

autonomous agents. These frameworks typically use a two-phase process (localization and

repair) to reduce the cost and complexity associated with fully agentic systems (Xia et al.,

2024).

Automated Pull Request (PR) Analysis The use of Generative AI to automat-

ically analyze code changes, generate titles and summaries, and identify potential issues

before human review. This technology aims to reduce the cognitive load on maintainers and

accelerate the code integration process (Zuo et al., 2024)(Balachandran & Fawzer, 2025).

Context-Aware Code Review An advanced review methodology where the AI tool

analyzes not just the syntax of the changed code, but the semantic context of the surrounding

codebase, commit history, and project documentation. This allows for more relevant and

accurate critiques compared to traditional static analysis (Balachandran & Fawzer, 2025).
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Generative AI (GenAI) A class of artificial intelligence systems capable of gener-

ating new content (text, code, images) in response to prompts. In software engineering, this

primarily refers to Large Language Models (LLMs) trained on vast repositories of source

code (e.g., GitHub) to assist in development tasks (Lakshmi et al., 2025)(Esposito et al.,

2024).

Human-Centered Software Engineering (HCSE) An approach to software de-

velopment that prioritizes the cognitive needs, capabilities, and limitations of the human

developers and users. In the AI era, HCSE focuses on designing AI assistants that aug-

ment rather than replace human decision-making, ensuring that the “human in the loop”

maintains agency and understanding (Seffah et al., 2009).

ISO/IEC 42001:2023 An international standard specifying requirements for es-

tablishing, implementing, maintaining, and continually improving an Artificial Intelligence

Management System (AIMS) within organizations. It provides the governance framework

necessary for the safe and compliant adoption of AI tools in enterprise environments (Seet,

2025)(Biroğul et al., 2025).

Large Language Model (LLM) A deep learning algorithm that can recognize,

summarize, translate, predict, and generate text and other content based on knowledge

gained from massive datasets. Models like GPT-4 and Claude are foundational to tools like

GitHub Copilot (Zuo et al., 2024)(Xia et al., 2024).

Software Bill of Materials (SBOM) A formal, machine-readable inventory of

software components and dependencies, their hierarchical relationships, and their licensing

information. Automated SBOM generation is critical in AI-assisted development to track

the provenance of AI-suggested libraries and mitigate supply chain risks (Shukla, 2025)(Syed,

2024).

SWE-bench A rigorous evaluation framework designed to test the capabilities of

Language Models on real-world software engineering issues collected from GitHub. It serves
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as a standard metric for assessing the ability of AI agents to resolve complex coding tasks

autonomously (Zhu & Kang, 2025).

Synthetic Pair Programmer A conceptual metaphor describing the role of AI

coding assistants (e.g., GitHub Copilot) as collaborative partners rather than simple tools.

This relationship mimics the dynamic of human pair programming, where the AI offers

suggestions, completions, and critiques in real-time (Reddy Vootukuri, 2025)(Smit et al.,

2024).

4.4 Appendix D: Implementation and Governance Resources

This appendix provides actionable resources for engineering leadership and practi-

tioners regarding the implementation of AI tools. It synthesizes the governance strategies

and risk mitigation techniques discussed in the literature review into practical checklists and

frameworks.

4.4.1 Strategic Adoption Framework

Implementing GenAI in a software organization requires a structured approach to

avoid “shadow AI” usage and ensure security. The following framework, adapted from Barón

(Barón, 2025) and Deloitte’s insights (Deloitte, 2024), outlines a four-phase implementation

strategy.

Phase Objective Key Actions Success Metric

1. Assess-

ment

Identify high-value

use cases

Survey dev teams;

Audit current toolchain

Use case clarity

2. Pilot Test efficacy &

security

Deploy to non-critical

teams; Sandbox testing

Dev satisfaction
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Phase Objective Key Actions Success Metric

3. Gover-

nance

Establish policy

guardrails

Define acceptable use;

Implement ISO 42001

Compliance rate

4. Scale Broad deployment Integration with

CI/CD; Training

programs

Velocity increase

Table D1: Strategic AI Adoption Framework for Engineering Organizations.

The Assessment phase is critical. Organizations must determine where AI adds value

versus where it introduces unnecessary risk. For example, applying AI to generate boiler-

plate code for UI components offers high value with low risk, whereas using AI to generate

cryptographic implementation logic carries extreme risk.

4.4.2 Risk Mitigation Checklist

Based on the supply chain security findings by Syed (Syed, 2024) and Aideyan et

al. (Aideyan et al., 2025), the following checklist is recommended for all organizations inte-

grating GenAI into their production pipelines.

1. Code Provenance & Supply Chain - [ ] Mandatory SBOMs: All AI-

generated code projects must auto-generate a Software Bill of Materials (Shukla, 2025). - [

] Dependency Verification: Automated scanning of all AI-suggested libraries to prevent

“dependency confusion” attacks. - [ ] Immutable Builds: Implementation of blockchain-

verified or signed builds to ensure code integrity from commit to deployment (Aideyan et al.,

2025).

2. Quality Assurance & Review - [ ] Human-in-the-Loop: Mandatory human

review for all AI-generated Pull Requests. No auto-merge for AI code (Cihan et al., 2025).

- [ ] Context-Aware Scanning: Utilization of advanced static analysis tools that under-

stand semantic context, not just syntax (Balachandran & Fawzer, 2025). - [ ] Adversarial
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Testing: Regular red-teaming of AI assistants using adversarial prompts to check for leaked

secrets or insecure patterns (Swaraj et al., 2025).

3. Policy and Compliance - [ ] Data Privacy Boundaries: Strict prohibition

of pasting proprietary logic or PII into public LLM interfaces (Rosenbaum, 2024). - [ ] ISO

Alignment: Alignment of internal AI policies with ISO/IEC 42001 standards regarding risk

management and transparency (Biroğul et al., 2025). - [ ] Training: Mandatory training

for developers on the limitations and hallucination risks of LLMs (Lakshmi et al., 2025).

4.4.3 Future-Readiness: Cloud and Infrastructure

As organizations move toward “Intelligent Cloud Systems,” the infrastructure sup-

porting AI development must evolve. Jamili et al. (Jamili et al., 2025) propose a framework

for sustainable and secure AI at scale. This involves “adaptive AI orchestration,” where the

underlying cloud infrastructure dynamically allocates resources based on the computational

needs of the AI models being used.

For software engineers, this means the development environment itself is becoming

“smart.” The IDE is no longer a static text editor but a terminal for an intelligent cloud sys-

tem that manages context, retrieves relevant documentation via RAG (Retrieval-Augmented

Generation), and enforces security policies in real-time. Preparing for this future requires

investing in strong cloud architectures that can support the high bandwidth and low latency

required for smooth AI interaction.
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